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Abstract

The field of eXplainable Artificial Intelligence (XAI) has made significant advance-
ments in recent years. However, most progress has focused on computer vision and
natural language processing. There has been limited research on XAI specifically
for audio or other time series data, where the input itself is often hard to interpret.
In this study, we introduce a virtual inspection layer that transforms time series
data into an interpretable representation and enables the use of local XAI methods
to attribute relevance to this representation.

1 Introduction

Research in Explainable Artificial Intelligence (XAI) has predominantly concentrated on Computer
Vision (CV) and Natural Language Processing (NLP), leaving other data domains like time series,
e.g. audio samples, under-explored. Often, local XAI methods are used to explain model output by
providing feature-wise attribution scores. These scores are presented as heatmaps overlaying the
sample to highlight relevant features. In this way, the explanation relies on the interpretability of
the input features, which is challenged for time series like the waveform of an audio sample. To
address this problem, we propose to incorporate Virtual Inspection Layers, leveraging an invertible
transformation to an interpretable domain, to enhance the interpretability of explanations [13].
Specializing to time series, we consider the Discrete Fourier Transform (DFT) which maps the data
to a representation, where meaningful features related to frequencies and their magnitudes can be
extracted. These are more easily interpretable, so can use the DFT as a Virtual Inspection Layer
and apply existing local attribution methods to provide interpretable explanations in the frequency
domain.

2 Related work

The field of XAI, primarily focused on CV and NLP, has seen a surge in research efforts dedicated to
time series analysis, see [12, 7] for a systematic review. In principle, XAI methods from CV and NLP
can be easily applied to time series classifiers using similar architectures such as CNNs or RNNs
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[5]. Notably, Layerwise Relevance Propagation (LRP) [2] has been used for explaining classifiers
for audio [3], and other time series data, such as ECG analysis [9], and EEG analysis [10]. Further,
Gradient× Input (G×I) has been applied to ECG classifers [8].However, these methods provide
attribution scores for individual time points, limiting their interpretability for time series [12]. Our
proposed virtual inspection layer allows for assessing relevance scores in an interpretable domain,
such as the frequency or time-frequency domain, enabling explanations using feature-wise post-hoc
XAI methods for classifiers operating in the time domain.

3 LRP propagates relevance to interpretable representation via Virtual
Inspection layer

Virtual inspection layer We view a neural network as a composition of layer- or block-wise
functions,

f(x) = fL ◦ · · · ◦ f1(x) .
We can use a a local XAI method to quantify the relevance Rf (xi) of each feature i in x towards
y = f(x). While the datapoint x representation is not interpretable for humans, we assume there is
an invertible transformation T (x) = x̃, that renders x interpretable. Now, we can now quantify the
relevance of x̃i by by attaching the inverse transform to the network,

f(x) = fL ◦ · · · ◦ f1 ◦ T −1 ◦ T (x)︸ ︷︷ ︸
x̃

, (1)

and compute the relevance scores R′
f (x̃i) for the interpretable representation. This does not necessiate

re-training the model on {x̃}. In general, an interpretable-representation-inducing bottleneck can be
inserted at any layer of the network.

Figure 1: Schematic overview of virtual inspection layers and (ST)DFT-LRP.

Relevance Propagation for the Discrete Fourier Transformation For a neural network trained
in time domain, we can use LRP to quantify the relevance Rn of each time step xn towards the
prediction. Here, we lay out how to propagate relevance one step further into the frequency domain.
A signal in time domain xn, n = 0, ..., N − 1 is connected to its representation in frequency domain
yk ∈ C, k = 0, ..., N − 1, via the DFT. The DFT and its inverse are linear transformations with
complex weights,

yk = DFT({xn}) =
1√
N

N−1∑
n=0

xn

[
cos(

2πkn

N
)− i sin(

2πkn

N
)

]
(2)

xn = DFT-1({yk}) =
1√
N

N−1∑
k=0

yk

[
cos(

2πkn

N
) + i sin(

2πkn

N
)

]
. (3)

Now, we attach a virtual inspection layer performing the inverse DFT in Eq. (3) to the model, before
the first layer f1 that operates on the signal in time domain, see Figure 1. For real valued signals
xn ∈ R we can express the inverse DFT as,

xn =
1√
N

N−1∑
k=0

Re(yk) cos
(2πkn

N

)
− Im(yk) sin

(2πkn
N

)
. (4)
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We assume that relevance values Rn are available and that they are of form Rn = xncn (a property
ensured by most LRP rules, in particular, LRP-0/ϵ/γ). Now, we wish to propagate relevance scores
Rn for xn onto yk. For this we employ the generic LRP-rule for propagating relevance scores Rj at
layer j onto neurons of the lower layer i,

Ri =
∑
j

zi,j∑
i zi,j

Rj (5)

for which we have to quantify the contribution zk,Re,n, zk,Im,n of neuron Re(yk), Im(yk) to xn.
Simply, the inverse DFT in Equation (4) is a homogeneous linear model, i.e. of type f(x) = wx, and
we can defined the contribution as the value of the neuron itself times the weight,

zk,Re,n = Re(yk) cos(
2πkn

N
), zk,Im,n = − Im(yk) sin(

2πkn

N
) . (6)

Now, we apply Eq. (5) to aggregate the contributions of each neuron Rk,Re, Rk,Im towards the model
output and find,

Rk,Re = Re(yk)
∑
n

cos(
2πkn

N
)
Rn

xn
, Rk,Im = − Im(yk)

∑
n

sin(
2πkn

N
)
Rn

xn
. (7)

Here, we assume Rk = 0 if xk = 0 and define 0/0 = 0. For numerical stability, we add a small-
valued constant ϵ to the denominator. We leverage the addivity of LRP attributions, and define
Rk = Rk,Re +Rk,Im, which can be abbreviated by

Rk = rk
∑
n

cos(
2πkn

N
+ φk)

Rn

xn
. (8)

where rk, φk denote amplitude and phase of yk.

To perform a short–time DFT (STDFT) one computes the DFT of windowed signals,

vm,k = DFT(xn · wm(n)︸ ︷︷ ︸
sm,n

) , (9)

to map the signal in time to time-frequency domain. Analogously to the DFT, we can propagate
relevance through the inverse short-time STDFT

x̃n =

∑
m DFT-1({vm,k})∑

m wm(n)
. (10)

by

Rm,k = rm,k

∑
n

cos(
2πkn

N
+ φm,k) ·W−1

n

Rn

xn
, (11)

where Wn =
∑

m wm(n).

4 Results

For real-world audio data, we 1) test which feature domain – time, frequency or time-frequency – is
the most informative to the model across different XAI methods, and 2) compare the faithfulness of
different XAI methods in each feature domain. We base our evaluation on a one-dimensional CNN
digit classification model trained on the raw waveforms from the AudioMNIST dataset [3] , which
achieves a test accuracy of 96%. As XAI methods, besides LRP, we consider Integrated Gradient
(IG) [11], Gradient times Input (G×I) (e.g. [1]), and Sensitivity [6]. We compute LRP relevances in
time domain and apply ST(DFT)-LRP via Equation (4) and Equation (10) to propagate relevances
Rn from time domain xn to frequency yk and time-frequency vm,k domain. Relevance scores for the
remaining XAI methods are evaluated for a model with a (ST)DFT virtual inspection layer attached to
the original input layer. We choose a rectangular window of size H = N/10 and hop length D = H
for the STDFT.

3



Informativeness First, we compute the Shannon entropy of the heatmaps to measure their com-
plexity [4]. In the most informative domain, relevance will be concentrated on only a few features
that are sufficient for the prediction, which results in heatmaps with low complexity. We list the
mean complexity over all heatmaps in Table 1. For each method except Sensitivity, the frequency
domain shows the lowest complexity, i.e. is most informative for the model, followed by time and
time-frequency domain. Notably, the visual impression of the heatmaps in Figure 2 suggests that
complexity is lower for time-frequency than for the time domain, as relevance shows distinct peaks at
certain frequencies in frequency and time-frequency domain, but is distributed rather uniformly in
time domain. We suspect that the higher complexity of time-frequency heatmaps compared to time
domain is due to artefact fringes in the spectrum, produced by the sharp edges of the rectangular
window. The complexity of Sensitivity heatmaps is the same for frequency and time-frequency
features because the method only takes into account the gradient, i.e. the weights of the DFT.

Faithfulness Second, we perform feature flipping in time, frequency, and time-frequency domain
to benchmark faithful. Here, we either flip features to a zero baseline in order of their relevance
scores (smallest destroying feature, SDF) or start with an empty signal and add the most relevant
features first (smallest constructing feature, SCF). After each feature modification, i.e. addition or
deletion, we measure the model’s output probability for the true class. For flipping in frequency or
time-frequency domain, we set the amplitude of yk, zk,m to zero. In time domain, we set the time
point xn to zero. For comparability of the feature flipping curve across domains, we scale them to
the ratio of modified features. A relevance attribution method that is faithful to the model reflects
in a steep descent or ascent in true class probabilities after flipping or adding the truthfully as most
important annotated features, respectively, and consequently in low or high AUC scores, that we list
in Table 1. For all domains, ((ST)DFT)-LRP delivers the most faithful relevance heatmaps, followed
by IG, G×I, and Sensitivity, according to both, SCF and SCF AUC scores.

Table 1: AUC of feature flipping curves for adding (SCF) and deleting (SDF) features, and complexity
scores for a digit classifier. The method with the globally highest faithfulness per domain, i.e. highest
(↑) AUC for SCF and lowest (↓) AUC for SDF, is marked in bold. Further, the domain with the lowest
complexity is marked in bold for each attribution method.

faithfulness across methods informativeness across domains
SCF (↑) SDF (↓) complexity (↓)

method domain

LRP frequency 0.66 0.28 6.00
time 0.73 0.28 6.69
time-freq. 0.69 0.31 7.26

IG frequency 0.60 0.32 6.97
time 0.34 0.35 7.14
time-freq. 0.67 0.31 8.52

G×I frequency 0.51 0.38 7.03
time 0.32 0.37 7.19
time-freq. 0.58 0.33 8.58

Sensitivity frequency 0.36 0.59 7.66
time 0.51 0.41 6.13
time-freq. 0.36 0.59 9.96

Figure 2: Time, time-frequency, and frequency signal (first row) and relevances (second row) for the
digit detection task on the AudioMNIST data. The signal corresponds to a spoken seven.
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5 Conclusion

We put forward virtual inspection layers that perform an identity loop via an interpretable represen-
tation to facilitate comprehensible explanations. We specialize in DFT for the virtual inspection
layer and in LRP for the XAI method. In this way, we demonstrate how to extend LRP to provide
interpretable explanations for time series classifiers in both the frequency and time-frequency domain.
We envision applications of DFT-LRP in domains where interpreting the time domain representation
of the signal is particularly challenging, in particular audio data, but also sensor data or electronic
health records.
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