
Unsupervised Musical Object Discovery from Audio

Joonsu Gha1 Vincent Herrmann1 Benjamin Grewe2

Jürgen Schmidhuber1,3 Anand Gopalakrishnan1

1The Swiss AI Lab, IDSIA, USI & SUPSI, Lugano, Switzerland
2 Institute of Neuroinformatics, ETH Zurich, Zürich, Switzerland

3AI Initiative, KAUST, Thuwal, Saudi Arabia
joonsu.gha@usi.ch
bgrewe@ethz.ch

{vincent.herrmann, juergen, anand}@idsia.ch

Abstract

Current object-centric learning models such as the popular SlotAttention architec-
ture allow for unsupervised visual scene decomposition. Our novel MusicSlots
method adapts SlotAttention to the audio domain, to achieve unsupervised music
decomposition. Since concepts of opacity and occlusion in vision have no auditory
analogues, the softmax normalization of alpha masks in the decoders of visual
object-centric models is not well-suited for decomposing audio objects. MusicSlots
overcomes this problem. We introduce a spectrogram-based multi-object music
dataset tailored to evaluate object-centric learning on western tonal music. Music-
Slots achieves good performance on unsupervised note discovery and outperforms
several established baselines on supervised note property prediction tasks.1

1 Introduction

Human infants learn to group the feature cues of incoming visual stimuli into a set of meaningful
entities [1]. This capacity to integrate feature cues into a “unified whole” [2, 3] extends beyond visual
perception to the auditory domain [4–6]. The notion of ‘object files’ [7] that capture this visual feature
integration has been posited to extend to the auditory domain [8, 9] as well. Recently, there has been
growing interest in developing unsupervised deep learning models for perceptual grouping (“object-
centric learning”) in the visual domain [10–23]. Such object-centric models bias the underlying
structure of machine perception to be human-like by modeling the scene as a composition of objects.
However, the object-centric learning literature has primarily focused on perceptual grouping task for
vision (images/video) and extensions to the auditory domain remain largely unexplored. Therefore,
we focus on extending object-centric models for the auditory, specifically musical domain. To the
best of our knowledge, no prior work has applied unsupervised object-centric models to the problem
of unsupervised music decomposition.

Western tonal music serves as a suitable form of auditory signal for our study as its building blocks are
symbolic units such as notes, chords or phrases, which themselves are organized into more complex
structures using rich grammars [24]. We investigate if object-centric models (SlotAttention [19]),
highly successful in visual grouping, are able to segregate constituent units of a musical score given
its spectrogram in a fully unsupervised manner. The auditory modality poses unique challenges as
the underlying structure of auditory objects differs from their visual counterparts. For instance, the
concepts of occlusion and opacity in the visual domain have no auditory analogues. If two auditory
objects occupy some overlapping spectral regions, their composition would approximately result in
the additive combination of their power spectra in these regions. In contrast, on the visual domain

1Official code repository: https://github.com/arahosu/MusicSlots

Machine Learning for Audio Workshop, NeurIPS 2023.

https://github.com/arahosu/MusicSlots

+ =

+ =

Figure 1: Illustration of the effects of opacity and occlusion in visual and auditory (spectral) domains.

where two opaque objects cannot occupy the same spatial location and one will necessarily occlude
the other e.g. the red ball in front of green cube in Figure 1. Therefore, in the visual case every pixel
is naturally assumed to belong to only one object while for audio this assumption does not hold true.

We propose MusicSlots, an autoencoder model to decompose a chord spectrogram into its constituent
note spectrograms (objects) in a fully unsupervised manner. We show that Softmax normalization
(across slots) of alpha masks in the SlotAttention decoder [19] is not well-suited for discovering
musical objects as it assumes that the feature at any spatial location belongs to only one object
(slot) which is invalid for the audio domain. Further, we introduce a multi-object music dataset
tailored to evaluate object-centric learning methods for music analogous to its visual counterpart
[25]. Our dataset consists of chord spectrograms (taken from Bach-Chorales [26] and Jazznet [27]),
constituent note spectrograms and corresponding ground-truth binary masks. Finally, we show that
our MusicSlots model achieves good performance on unsupervised note discovery, outperforms
several baseline models (VAE, β-VAE, AutoEncoder, supervised CNN) on supervised note property
prediction task and generalizes better to unseen note combinations and number of notes.

2 Method

Given a mel-scale spectrogram representation x ∈ R
Din×h×w of a musical chord, our goal is to

decompose it into its constituent note-level spectrograms xk ∈ R
Din×h×w ∀k = {1, 2, ...,K} and

learn their associated representations (slots) s ∈ R
Ds×K . Here, Din denotes the number of channels

in the spectrogram, Ds the slot size, h,w the number of frequency bins and time window of the
input spectrogram respectively and K the total number of slots. Our proposed MusicSlots model
is an autoencoder which consists of three modules (see Figure 2). An encoder module (CNN) to
extract features from the input spectrogram, slot attention module to group input features to slots and
decoder module to reconstruct the chord spectrogram from the slot representations.

Encoder. The encoder module consists of a CNN backbone to extract features h ∈ R
Df×h×w from

the input chord spectrogram x. Learnable positional embeddings p ∈ R
Df×h×w (see Appendix A.2

for more details) are added to the output features h from the final convolutional layer.

Slot Attention. The slot attention module learns to map a set of N = h · w input features onto
a set of K slots using an iterative attention mechanism (Algorithm 1 from Locatello et al. [19])
implemented via key-value attention [28] and recurrent update function. The input features h are
projected to a set of keys k and values v ∈ R

Ds×N using separate linear layers. Each slot sk is
initialized as independent samples from a Gaussian distribution N (µk, σk) with separate learnable
mean µk ∈ R

Ds and standard-deviation σk ∈ R
Ds . Then at each iteration t = {1, ..., T}, slots

compete to represent elements of the set of features using standard key-value attention (with features
as keys & values and slots as queries) except with softmax normalization applied across the slots.
We use a recurrent network (specifically a GRU [29, 30]) and residual MLP [19]) to update the slots
with weighted values as inputs and slots at t− 1 as hidden states of the RNN. Further, our MusicSlots
model also adopts recent improvements to SlotAttention such as implicit differentiation [31].

Decoder. Each slot sk is decoded independently by the spatial broadcast decoder [32] (see Figure 2)
using several de-convolutional layers. First, slots are broadcasted onto a 2D grid (independently)

2

Slot

Decod

er

Encoder ×𝑇

Slot Attention

Broadcast

Decoder
dB to

power

power

to dBΣ
×𝑇

𝑘

Input Chord Spectrogram Predicted Note Spectrogram Predicted Chord Spectrogram

×

𝑚$!

�̂�! 𝑥("

Figure 2: MusicSlots model consists of 3 modules — Encoder, SlotAttention and Broadcast Decoder.

and learnable positional embeddings are added. The decoder outputs the reconstructed note-level
spectrogram x̂k ∈ R

Din×h×w and un-normalized (logits) alpha mask mk ∈ R
1×h×w. The individual

slot-wise spectrograms and normalized masks mk = fnorm(mk) ∈ R
1×h×w are alpha composited to

give the predicted power-scale chord spectrogram x̂p =
∑K

k=1
p̂k ⊙mk where p̂k is the power-scale

note spectrogram, ⊙ is an element-wise multiplication and fnorm is the normalization function. This
composition operation needs to carried out in power-scale followed by conversion back to decibel
scale to get the predicted chord spectrogram x̂ as follows:

p̂k = 10x̂k/10 ; x̂p =

K
∑

k=1

p̂k ⊙mk ; x̂ = 10 log
10

(x̂p

x̂p0

)

dB (1)

where p̂k is the power-scale note spectrogram, xp is the chord spectrogram in power scale and x̂p0

is the reference power. Further, a crucial modification required to adapt SlotAttention to the audio
domain, is the choice of this normalization function fnorm for alpha masks. For auditory objects, as
illustrated in Figure 1 notions of occlusion and opacity are invalid which means that its feasible for
one or more notes (slots) to contribute to the power at a spatial location (frequency bin and time) in
the spectrogram. Contrarily, in the visual domain its necessarily the case that every pixel belongs
to only one object. Therefore, we experiment with alternatives such as Sigmoid and not using any
alpha masks in the broadcast decoder. We train our MusicSlots model using the MSE between the
predicted and input chord spectrogram L = ||x− x̂||2

2
. For more details on model architecture and

training hyperparameters please refer to Appendix A.2 and Appendix A.3 respectively.

3 Related Work

Learning music representations from audio has been explored using self-supervised techniques
such as autoencoders [33–35] and contrastive methods [36–39] or weak supervision from different
modalities [40–43]. Related to our work, ‘Audioslots’ [44] applies object-centric models to the audio
domain for blind source separation. However, their model is strongly supervised as it is trained using
MSE loss between predicted and matched ground-truth individual source spectrograms. Others have
applied slot-based object-centric models beyond vision to learn modular action sequences for RL
agents [45] or robotic control policies [46].

4 Results

We describe details of our multi-object music dataset followed by results on unsupervised note
discovery and supervised note property prediction tasks.

Multi-Object Music Datasets. To evaluate the efficacy of our proposed MusicSlots model on the
unsupervised music decomposition task, we need a dataset of musical scores in the spectral format
and its decomposition into sub-parts i.e. part-level spectrograms and binary masks (see Figure 4). We
introduce synthetic multi-object datasets to specifically evaluate object-centric learning methods on
the music domain analogous to its visual counterpart [25]. First, we extract chords (MIDI tokens)
from Bach-Chorales (JSB) [26] and JazzNet [27] datasets. Next, we synthesize the audio waveform
and its spectrogram for these chords (see Appendix A.1 for more details). Our dataset consists of

3

two variants — i) single-instrument: all notes in a chord played by the same instrument, ii) multi-
instrument: different notes in a chord played by different instruments. We create out-of-distribution
test splits that measure generalization to unseen note combinations and number of notes in a chord.
The test split in Bach Chorales contains chords with known notes in unknown combinations (w.r.t
train/validation splits) whereas in JazzNet it contains only chords with four notes, while training and
validation splits consist of two and three-note chords (see Appendix A.1 for more details).

Note Discovery. We train three variants of our MusicSlots model with different choices for
fnorm — i) Softmax (MusicSlots-soft) ii) Sigmoid (MusicSlots-sigm) iii) no alpha mask usage
(MusicSlots-none). We refer to Table 11 and Appendix A.2 for model/training details. We
quantitatively measure note (object) discovery performance of our models using the best matched
note-level MSE of spectrograms and mean IoU scores of binary masks. Table 1 shows the note
discovery results of MusicSlots on multi-instrument versions of JSB and JazzNet datasets. We see
that the MusicSlots without any alpha masking is competitive with Sigmoid normalization and these
alternatives show significant performance gains over the default Softmax. Further, we observe that
training on multi-instrument chord datasets is beneficial for better decomposition quality (compare
with single-instrument in Appendix B). We show samples of good decomposition and some failure
cases of our MusicSlots model in Appendix C.

Table 1: Note discovery results on multi-instrument BachChorales (JSB) and JazzNet datasets for
MusicSlots models. Mean and std-dev. are reported across 5 seeds.

Datasets Mask Norm. Note MSE ↓ mIoU ↑

JSB-multi
MusicSlots-soft 59.34 ±22.01 0.79 ±0.04

MusicSlots-sigm 13.07 ±0.80 0.90 ±0.01

MusicSlots-none 13.47 ±0.90 0.91 ±0.01

JazzNet-multi
MusicSlots-soft 33.58 ±2.08 0.84 ±0.01

MusicSlots-sigm 18.53 ±0.83 0.91 ±0.01

MusicSlots-none 19.95 ±1.89 0.90 ±0.01

Note Property Prediction. We train a linear classifier with cross-entropy loss (see Appendix A.2
for details) to predict the properties (MIDI pitch value and instrument type) of all notes in a chord
from the frozen (pre-trained) latent representations. We use the classification accuracy as the
evaluation metric for this task wherein a chord is considered to be correctly classified if and only if all
its note pitch values and instrument identities are correctly predicted. The supervised CNN baseline
uses the same encoder module as MusicSlots followed by a two layer MLP and trained in a supervised
manner to predict the note properties given the chord spectrogram. Table 2 shows the note property
results for our MusicSlots model against various baseline models. We see that our MusicSlots model
outperforms several unsupervised baseline models (AutoEncoder/VAE/β-VAE). Surprisingly it also
outperforms the supervised CNN baseline which is explicitly trained end-to-end to solve the task.
Further, MusicSlots shows a greater degree of generalization to unseen note combinations on the
test splits of JSB-multi and different number of notes in a chord on JazzNet-multi respectively.

Table 2: Note property prediction performance of MusicSlots compared to Autoencoder, VAE, β-VAE
and supervised CNN baseline models. Mean and std-dev. are reported across 5 seeds.

Models
JSB-multi JazzNet-multi

Val-Acc. Test-Acc. Val-Acc. Test-Acc.

Supervised CNN 93.49 ±2.10 93.03 ±2.10 96.47 ±0.79 71.22 ±2.93

AutoEncoder 95.02 ±0.09 93.62 ±0.39 92.91 ±0.26 71.37 ±1.07

VAE 96.66 ±0.34 96.21 ±0.35 94.37 ±0.55 71.55 ±4.77

β-VAE 97.85 ±0.13 97.42 ±0.06 97.00 ±0.37 81.53 ±0.77

MusicSlots-none 98.13 ±0.16 97.77 ±0.12 98.96 ±0.39 87.65 ±1.88

4

5 Conclusion

Our MusicSlots model is the first method to extend object-centric learning to the domain of music. To
evaluate such models, we introduced novel multi-object music datasets based on Western tonal music.
MusicSlots successfully decomposes chord spectrograms into their constituent note spectrograms,
and outperforms several well-established unsupervised and supervised baselines on downstream note
property prediction tasks. Representations learned by MusicSlots are potentially useful for practical
applications, such as music transcription/generation and building more human-like perceptual models
of audio and music.

Acknowledgments. We thank Hamza Keurti and Yassine Taoudi Benchekroun for insightful
discussions. This research was funded by Swiss National Science Foundation grant: 200021_192356,
project NEUSYM and the ERC Advanced grant no: 742870, AlgoRNN. We also thank NVIDIA
Corporation for donating DGX machines as part of the Pioneers of AI Research Award.

References

[1] Elizabeth S. Spelke. Principles of object perception. Cognitive Science, 14(1):29–56, 1990.

[2] Kurt Koffka. Principles of gestalt psychology. Philosophy and Scientific Method, 32(8), 1935.

[3] Wolfgang Köhler. Gestalt psychology. Psychologische Forschung, 31(1), 1967.

[4] Michael Kubovy and David Van Valkenburg. Auditory and visual objects. Cognition, 80(1-2):
97–126, 2001.

[5] Timothy D. Griffiths and Jason D. Warren. What is an auditory object? Nature Reviews
Neuroscience, 5:887–892, 2004.

[6] Jennifer K. Bizley and Yale E. Cohen. The what, where and how of auditory-object perception.
Nature Reviews Neuroscience, 14:693–707, 2013.

[7] Daniel Kahneman, Anne Treisman, and Brian J Gibbs. The reviewing of object files: Object-
specific integration of information. Cognitive psychology, 24(2):175–219, 1992.

[8] Michael D Hall, Richard E Pastore, Barbara E Acker, and Wenyi Huang. Evidence for auditory
feature integration with spatially distributed items. Perception & Psychophysics, 62(6):1243–
1257, 2000.

[9] Sharon Zmigrod and Bernhard Hommel. Auditory event files: Integrating auditory perception
and action planning. Attention, Perception, & Psychophysics, 71:352–362, 2009.

[10] SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E
Hinton, et al. Attend, infer, repeat: Fast scene understanding with generative models. In Proc.
Advances in Neural Information Processing Systems (NIPS), pages 3225–3233, 2016.

[11] Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hao, Harri Valpola, and Jürgen Schmidhuber.
Tagger: Deep unsupervised perceptual grouping. In Proc. Advances in Neural Information
Processing Systems (NIPS), volume 29, 2016.

[12] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization.
In Proc. Advances in Neural Information Processing Systems (NIPS), pages 6691–6701, 2017.

[13] Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational neural
expectation maximization: Unsupervised discovery of objects and their interactions. In Int.
Conf. on Learning Representations (ICLR), 2018.

[14] Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequential attend, infer,
repeat: Generative modelling of moving objects. In Proc. Advances in Neural Information
Processing Systems (NIPS), pages 8606–8616, 2018.

[15] Aleksandar Stanić and Jürgen Schmidhuber. R-sqair: Relational sequential attend, infer, repeat.
In Neurips Workshop on Perception as Generative Reasoning: Structure, Causality, Probability,
2019.

5

[16] Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with convo-
lutional neural networks. In Proc. AAAI Conf. on Artificial Intelligence, 2019.

[17] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and representa-
tion. arXiv preprint arXiv:1901.11390, 2019.

[18] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess,
Daniel Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object repre-
sentation learning with iterative variational inference. In Proc. Int. Conf. on Machine Learning
(ICML), pages 2424–2433, 2019.

[19] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with
slot attention. In Proc. Advances in Neural Information Processing Systems (NeurIPS), 2020.

[20] Martin Engelcke, Adam R. Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Genera-
tive scene inference and sampling with object-centric latent representations. In Int. Conf. on
Learning Representations (ICLR), 2020.

[21] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. SPACE: unsupervised object-oriented scene representation via spatial
attention and decomposition. In Int. Conf. on Learning Representations (ICLR), 2020.

[22] Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate DALLE learns to compose. In Int. Conf.
on Learning Representations (ICLR), 2022.

[23] Thomas Kipf, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour,
Georg Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional object-
centric learning from video. In Int. Conf. on Learning Representations (ICLR), 2022.

[24] Fred Lerdahl and Ray S Jackendoff. A Generative Theory of Tonal Music. MIT press, 1983.

[25] Rishabh Kabra, Chris Burgess, Loic Matthey, Raphael Lopez Kaufman, Klaus Greff, Malcolm
Reynolds, and Alexander Lerchner. Multi-object datasets. https://github.com/deepmind/multi-
object-datasets/, 2019.

[26] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling temporal
dependencies in high-dimensional sequences: Application to polyphonic music generation and
transcription. In Proc. Int. Conf. on Machine Learning (ICML), page 1881–1888, 2012.

[27] Tosiron Adegbija. jazznet: A dataset of fundamental piano patterns for music audio machine
learning research. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2023.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. Advances in Neural
Information Processing Systems (NIPS), pages 5998–6008, 2017.

[29] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn en-
coder–decoder for statistical machine translation. In Proc. Conf. on Empirical Methods in
Natural Language Processing (EMNLP), 2014.

[30] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to Forget: Continual
Prediction with LSTM. Neural Computation, 12(10):2451–2471, 2000.

[31] Michael Chang, Tom Griffiths, and Sergey Levine. Object representations as fixed points:
Training iterative refinement algorithms with implicit differentiation. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), volume 35, pages 32694–32708, 2022.

[32] Nicholas Watters, Loic Matthey, Christopher P Burgess, and Alexander Lerchner. Spatial
broadcast decoder: A simple architecture for learning disentangled representations in VAEs. In
Learning from Limited Labeled Data (LLD) Workshop, ICLR, 2019.

6

[33] Antoine Caillon and Philippe Esling. RAVE: A variational autoencoder for fast and high-quality
neural audio synthesis, 2022.

[34] Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi.
Soundstream: An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 30:495–507, 2021.

[35] Yizhi Li, Ruibin Yuan, Ge Zhang, Yinghao Ma, Chenghua Lin, Xingran Chen, Anton Ragni,
Hanzhi Yin, Zhijie Hu, Haoyu He, Emmanouil Benetos, Norbert Gyenge, Ruibo Liu, and Jie Fu.
Map-music2vec: A simple and effective baseline for self-supervised music audio representation
learning. In Proc. International Society for Music Information Retrieval, 2022.

[36] Janne Spijkervet and John Ashley Burgoyne. Contrastive learning of musical representations.
In Proc. International Society for Music Information Retrieval, 2021.

[37] Matthew C. McCallum, Filip Korzeniowski, Sergio Oramas, Fabien Gouyon, and Andreas F.
Ehmann. Supervised and unsupervised learning of audio representations for music understand-
ing. In Proc. International Society for Music Information Retrieval, 2022.

[38] J. Choi, S. Jang, H. Cho, and S. Chung. Towards proper contrastive self-supervised learning
strategies for music audio representation. In IEEE International Conference on Multimedia and
Expo (ICME), pages 1–6, 2022.

[39] Luyu Wang, Pauline Luc, Yan Wu, Adria Recasens, Lucas Smaira, Andrew Brock, Andrew
Jaegle, Jean-Baptiste Alayrac, Sander Dieleman, Joao Carreira, and Aaron van den Oord. To-
wards learning universal audio representations. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4593–4597, 2022.

[40] Jason Weston, Samy Bengio, and Philippe Hamel. Multi-tasking with joint semantic spaces
for large-scale music annotation and retrieval. Journal of New Music Research, 40(4):337–348,
2011.

[41] Jiyoung Park, Jongpil Lee, Jangyeon Park, Jung-Woo Ha, and Juhan Nam. Representation
learning of music using artist labels. In Proc. International Society for Music Information
Retrieval, 2017.

[42] Ilaria Manco, Emmanouil Benetos, Elio Quinton, and György Fazekas. Learning music audio
representations via weak language supervision. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 456–460, 2022.

[43] Tianyu Chen, Yuan Xie, Shuai Zhang, Shaohan Huang, Haoyi Zhou, and Jianxin Li. Learning
music sequence representation from text supervision. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4583–4587, 2022.

[44] Pradyumna Reddy, Scott Wisdom, Klaus Greff, John R. Hershey, and Thomas Kipf. Audioslots:
A slot-centric generative model for audio separation. 2023 IEEE International Conference on
Acoustics, Speech, and Signal Processing Workshops (ICASSPW), pages 1–5, 2023.

[45] Anand Gopalakrishnan, Kazuki Irie, Jürgen Schmidhuber, and Sjoerd van Steenkiste. Unsuper-
vised Learning of Temporal Abstractions With Slot-Based Transformers. Neural Computation,
35(4):593–626, 2023.

[46] Yifan Zhou, Shubham Sonawani, Mariano Phielipp, Simon Stepputtis, and Heni Amor. Mod-
ularity through attention: Efficient training and transfer of language-conditioned policies for
robot manipulation. In Karen Liu, Dana Kulic, and Jeff Ichnowski, editors, Proceedings of The
6th Conference on Robot Learning, volume 205, pages 1684–1695, 2023.

[47] Harold W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Research Logistics
Quarterly, 2(1–2):pages 83–97, 1955.

7

A Experimental Details

In this section, we report details on our multi-object music datasets, model implementation, and
experimental setting.

A.1 Multi-Object Music Dataset

Bach Chorales. The original dataset consists of training, validation and test splits with 229, 76
and 77 chorales respectively. Each chorale is represented as a sequence of four MIDI values for
the Bass, Tenor, Alto and Soprano (BTAS) voices. If a voice is silent at a given time step, the
pitch value is 0. Since we are interested in extracting unique chords from the chorales, we first
concatenate all MIDI sequences of the 376 chorales together across time, and exclude all the columns
corresponding to duplicate chords or single note examples, giving us 3131 unique chords in total.
We then randomly shuffle the dataset and partition it into training, validation and test splits, using a
train-validation-test split ratio of 70/20/10. The MIDI pitch values for the chorales are available at
https://github.com/czhuang/JSB-Chorales-dataset.

JazzNet. The JazzNet dataset (https://github.com/tosiron/jazznet) contains 5525 anno-
tated chords (including the inversions). Of the 5525 chords, we use 2227 unique chords with the
MIDI pitch values of their notes ranging from 36 (C2) to 96 (C7). Similar to the chords in the Bach
Chorales, the pitch values of the JazzNet chords are represented as an array of 4 MIDI values, with 0
denoting silence. The train-validation-test splits are defined such that the training and validation sets
contain only dyads (2-notes) and triads (3-notes), while the test set contains only tetrads (4-notes).

In the the following paragraphs we describe the details of the pipeline to generate our multi-object mu-
sic datasets starting with the MIDI tokens of chords and finally getting chord/note-level spectrograms
and binary masks.

MIDI Pitch Values

[60, 64, 67]

C-maj chord

Pitch = 67

Instrument = Flute

Durations = 1.0

Volume = 0.71

Pitch = 64

Instrument = Violin

Durations = 1.0

Volume = 0.71

Pitch = 60

Instrument = Piano

Durations = 1.0

Volume = 0.71

MIDI data Audio Waveforms Spectrograms

Figure 3: Multi-instrument dataset generation pipeline. Every note in the chord can be synthesized
into a raw audio waveform using a different instrument (e.g. Yamaha grand piano, violin, flute).

MIDI File Generation. To allow fine-grained control over the note properties, we generate the
MIDI files for the chords ourselves using the Music21 library. Our data sources define the chords and
their pitch values, and we specify the rest of their note attributes (i.e. volume, instrument, duration),
as shown in Figure 3. In the Music21 library, the volume of the note is a scalar value ranging from 0.0
to 1.0 while the duration of the note is measured in seconds. We keep the duration and volume fixed
across datasets by setting them to 0.71 and 1.0 second respectively. To generate examples for the multi-
instrument version of our dataset, we include the option to change the instrument that plays each note
in a chord. The list of instruments is defined by a sf2 file. The sf2 file that is used in our dataset can
be downloaded here: https://member.keymusician.com/Member/FluidR3_GM/index.html.

Audio Waveform Generation. The generated MIDI files are then synthesized into audio waveforms
using Fluidsynth (https://www.fluidsynth.org/). The default PCM quantization settings used

8

https://github.com/czhuang/JSB-Chorales-dataset
https://github.com/tosiron/jazznet
https://member.keymusician.com/Member/FluidR3_GM/index.html
https://www.fluidsynth.org/

in the Fluidsynth library are bit-depth of 16 and sample rate of 44.1 kHz. We further downsample the
waveforms to 16kHz. We zero-pad the waveforms at the start with a padding size of 4000, which
corresponds to about 0.1s of silence.

Waveform to Spectrogram Conversion. We obtain the spectrograms for the chords and their
notes by converting their audio waveforms into mel-spectrograms using the TorchAudio library
(https://pytorch.org/audio/stable/index.html). We set the number of mel-filter banks
to 128 and use the FFT and window sizes of 1024 and hop length of 512. The resulting 128 × 35
spectrogram is resized by cropping along the width boundaries [0, 32], giving us a resolution of
128× 32. To generate a chord spectrogram, we combine the waveforms of its constituent notes, and
convert the summed waveform to a mel-spectrogram using the same mel-spectrogram parameters.

Mask Generation. To generate the binary masks from the mel-spectrograms, we use a fixed decibel
threshold value of -30 dB for both the ground-truth and the predicted note spectrograms. Examples
of the binary masks for different note spectrograms are shown in Figure 4.

Figure 4: Visualization of the note spectrograms (top row) and the corresponding decibel-thresholded
binary masks (bottom row)

Dataset Statistics. In Tables 3 and 4, we report the numbers of dyads, triads and tetrads in the
datasets. The dataset splits, number of unique pitch values (represented as MIDI note numbers) and
instruments are summarized in Table 5.

Table 3: Chord statistics for Bach Chorales.

Splits Dyads Triads Tetrads Total

Train 10 270 1910 2190
Validation 1 85 540 626

Test 1 43 271 315

Total 12 398 2721 3131

9

https://pytorch.org/audio/stable/index.html

Table 4: Chord statistics for JazzNet

Splits Dyads Triads Tetrads Total

Train 530 544 0 1074
Validation 124 145 0 269

Test 0 0 884 884

Total 654 689 884 2227

Table 5: Number of examples in the dataset splits, number of unique pitch values and name of the
instruments used.

Dataset Name Train Validation Test Pitch Values Instrument(s)

JSB-single 2190 626 315 53 Piano
JSB-multi 19719 5634 2826 53 Piano, Violin, Flute

Jazznet-single 1074 269 884 62 Piano
Jazznet-multi 19458 5031 71604 62 Piano, Violin, Flute

A.2 Model Architecture Details

Here we describe the architectural details of all models used in this work.

Convolutional Encoder. Table 6 describes the model architecture for the CNN encoder of the
MusicSlots. We use a CNN encoder similar to the one found in [19] for the unsupervised object
discovery task. All convolution layers use a kernel size of 5× 5 with a channel size of 128. Unlike
[19], we set the stride for the horizontal axis to 2. We find that this improves performance for the
unsupervised note discovery task (see Table 15 for details).

Table 6: CNN Encoder in MusicSlots.

Layer
Feature Dimension

H ×W × C
Activation Stride

Padding
Input / Output

Input 128× 32× 1 - - -

Conv 5× 5 128× 16× 128 ReLU (1, 2) (2, 2) / -
Conv 5× 5 128× 8× 128 ReLU (1, 2) (2, 2) / -
Conv 5× 5 128× 4× 128 ReLU (1, 2) (2, 2) / -
Conv 5× 5 128× 2× 128 ReLU (1, 2) (2, 2) / -

Position Embedding 128× 2× 128 - - -
Flatten 1× 256× 128 - - -

Layer Norm 1× 256× 128 - - -
Linear 1× 256× 128 ReLU - -
Linear 1× 256× 128 - - -

Positional Embedding. We use the same positional embeddings as [19]. The positional embedding
is a W ×H × 4 tensor, where W and H are width and height of the CNN feature maps respectively.
The positional information is defined by a linear gradient [0, 1] in each of the four cardinal directions.
Essentially, every point on the grid is a four-dimensional vector that indicates its relative distance to
the four edges of the feature map. We define a learnable linear projection that projects the feature
vectors to match the dimensionality of the CNN feature vectors. We finally add the linearly projected
result to the input CNN feature maps.

Slot Attention Module. For all experiments, we use the same number of slots K = 7 and slot
attention iterations T = 3. We set D and Ds to be 128 for the dimensions of the linear projections
and the slots respectively. The hidden state of the GRU cell has a dimension of 128. The residual
MLP has a single hidden layer of size 128 with ReLU activation, followed by a linear layer.

10

De-convolutional Decoder. We follow the same spatial broadcast deconvolutional decoder ([32])
used in [19], except we set the number of channels in the transposed convolution layers to 128. The
overall architecture for the MusicSlots decoder is detailed in Table 7.

Table 7: Deconvolution-based slot decoder in MusicSlots.

Layer
Feature Dimensions
K ×H ×W × C

Activation Stride
Padding

Input / Output

Input 7× 1× 1× 128 - - -

Spatial Broadcast 7× 8× 2× 128 - - -
Position Embedding 7× 8× 2× 128 - - -

ConvTranspose 5× 5 7× 16× 4× 128 ReLU (2, 2) (2, 2) / (1, 1)
ConvTranspose 5× 5 7× 32× 8× 128 ReLU (2, 2) (2, 2) / (1, 1)
ConvTranspose 5× 5 7× 64× 16× 128 ReLU (2, 2) (2, 2) / (1, 1)
ConvTranspose 5× 5 7× 128× 32× 128 ReLU (2, 2) (2, 2) / (1, 1)
ConvTranspose 5× 5 7× 128× 32× 128 ReLU (1, 1) (2, 2) / -
ConvTranspose 3× 3 7× 128× 32× 1 - (1, 1) (1, 1) / -

Baseline AutoEncoders. The architectural details for the encoder and decoder of the baseline
AutoEncoders (AutoEncoder, VAE, β-VAE) are presented in Tables 8 and 9. We set the latent space
dimension for the baseline AutoEncoders to 128.

Table 8: Convolutional encoder for the baseline AutoEncoders, excluding the final two Linear layers
that parameterize the µ and σ of the approximate posterior for the VAE.

Layer
Feature Dimension

H ×W × C
Activation Stride

Padding
Input / Output

Input 128× 32× 1 - - -

Conv 5× 5 64× 16× 128 ReLU (2, 2) (2, 2) / -
Conv 5× 5 32× 8× 128 ReLU (2, 2) (2, 2) / -
Conv 5× 5 16× 4× 128 ReLU (2, 2) (2, 2) / -
Conv 5× 5 8× 2× 128 ReLU (2, 2) (2, 2) / -

Flatten 1× 1× 2048 - - -

Table 9: De-convolutional decoder for the AutoEncoder baselines.

Layer
Feature Dimensions

H ×W × C
Activation Stride

Padding
Input / Output

Input 1× 1× 128 - - -

Linear 1× 1× 2048 - - -
Reshape 8× 2× 128 - - -

ConvTranspose 5× 5 16× 4× 128 ReLU (2, 2) (2, 2) / (1, 1)
ConvTranspose 5× 5 32× 8× 128 ReLU (2, 2) (2, 2) / (1, 1)
ConvTranspose 5× 5 64× 16× 128 ReLU (2, 2) (2, 2) / (1, 1)
ConvTranspose 5× 5 128× 32× 128 ReLU (2, 2) (2, 2) / (1, 1)
ConvTranspose 5× 5 128× 32× 128 ReLU (1, 1) (2, 2) / -
ConvTranspose 3× 3 128× 32× 1 - (1, 1) (1, 1) / -

Linear Classifier for MusicSlots. A linear classifier is trained on every slot that is matched with
a note to independently predict its pitch value and instrument identity. The linear classifier outputs
two vectors ŷinst ∈ Ninst and ŷpitch ∈ Npitch, where Npitch is the number of unique pitch values and
Ninst is the number of instruments in the dataset. Both ŷinst and ŷpitch are normalized using a softmax
activation, since pitch values and instrument identities are encoded as one-hot vectors.

11

Linear Classifier for Baseline AutoEncoders. In the baseline AutoEncoders, the representations
of individual notes are not readily available. Therefore, the input to the linear classifier is a single
latent vector. The classifier outputs a prediction ŷ ∈ Ninst ×Npitch for the properties of all the notes
in a chord at once. In this case, ŷ uses sigmoid activation, since the label y is encoded as a multi-hot
vector.

Supervised CNN. The model architecture for the supervised baseline CNN is depicted in Table
10. It follows the same encoder backbone as the one used in MusicSlots. The output of the encoder
module is followed by a 2-layer MLP with an output size Ninst ×Npitch.

Table 10: Supervised CNN for the property prediction task.

Layer
Feature Dimension

H ×W × C
Activation Stride

Padding
Input / Output

Input 128× 32× 1 - - -

Conv 5× 5 64× 16× 128 ReLU (2, 2) (2, 2) / -
Conv 5× 5 32× 8× 128 ReLU (2, 2) (2, 2) / -
Conv 5× 5 16× 4× 128 ReLU (2, 2) (2, 2) / -
Conv 5× 5 8× 2× 128 ReLU (2, 2) (2, 2) / -

Flatten 1× 1× 2048 - - -
Linear 1× 1× 128 ReLU - -
Linear 1× output size Sigmoid - -

A.3 Training Details

In this section, we provide an overview of the training details for MusicSlots and its baselines,
including their hyperparameter choices and training objectives. The hyperparameters for training
MusicSlots on the unsupervised note discovery task are shown in Table 11. All downstream
classifiers, including the supervised CNN model, share the common hyperparameters for the note
property prediction task, as shown in Table 12. The training hyperparameters for the unsupervised
baselines (i.e. AutoEncoder, VAE, β-VAE) are displayed in Table 13.

Baseline AutoEncoders. The baseline AutoEncoder follows the same training objective as Mu-
sicSlots: they are both trained to minimize the Mean Square Error (MSE) between the predicted
and input chord spectrogram L = ||x− x̂||2

2
. The baseline VAE and β-VAE models are trained by

maximizing the evidence lower bound (ELBO), where the weight of the KL-divergence term β is set
to 1 for the baseline VAE. For more details on the effect of different choices for β on the downstream
note property prediction task, please refer to Table 16 in Appendix B.

Downstream Classifiers. The downstream note property classifier for MusicSlots is trained by
minimizing the categorical cross-entropy loss. For the supervised CNN and the linear classifier
trained on the baseline AutoEncoders, we use binary cross-entropy loss, since the target is a multi-hot
vector.

A.4 Evaluation Details

Note Discovery. To compute the note MSE, we first calculate the mean squared error between all
pairs of predicted and ground-truth note spectrograms. Since the orders of the predictions and the
ground-truth are arbitrary, we match them using the Hungarian algorithm ([47]) to find the matching
with the lowest MSE. mIoU is calculated by first computing all pairwise IoUs between the predicted
and ground-truth dB-thresholded masks, and using the Hungarian algorithm to find the optimal
assignment that gives the highest mIoU. For the Hungarian matching algorithm, we use the scipy
implementation scipy.optimize.linear_sum_assignment.

Note Property Prediction. The performance of the classifiers is quantified using classification
accuracy. The accuracy is measured by computing the percentage of correctly classified chord

12

Table 11: Training hyperparameters of the MusicSlots model for unsupervised note discovery
experiments

Hyperparameters

Training Steps 100K
Batch Size 32
Optimizer Adam
Max. Learning Rate 1e-04
Learning Rate Warmup Steps 10K
Decay Steps 500K
Gradient Norm Clipping 1.0

Table 12: Training hyperparameters for the note property prediction task

Hyperparameters

Training steps 10K
Batch Size 32
Optimizer Adam
Learning Rate 1e-03

Table 13: Training hyperparameters for the baseline AEs during the unsupervised pre-training.

Hyperparameters

Training Steps 100K
Learning Rate 1e-04
Batch Size 32
Optimizer Adam
Decay Steps 100K
Gradient Norm Clipping 1.0

examples in the dataset. A chord is considered to be correctly classified if and only if the classifier
predictions for all of its note properties (i.e. note pitch values, instrument identities) are correct.

B Additional Results

In this section, we present additional results that quantify the importance of different modelling
choices.

Single-instrument Note Discovery Results Table 14 shows the unsupervised note discovery
performance of our MusicSlots model with different alpha mask normalization choices on the
single-instrument JSB and JazzNet datasets. We observe significant performance gain in the single-
instrument setting when sigmoid-normalized alpha masks or no alpha masks are used in our Music-
Slots model.

Ablation on Architectural Modifications Table 15 presents our ablation study on different archi-
tectural choices in our MusicSlots model on the multi-instrument Bach Chorales and JazzNet datasets.
We start from the ‘Default’ model that follows the same setup used for object discovery in [19]. In
this setup, we have stride length of (1, 1) in the convolutional encoder layers and the alpha masks of
the decoder are normalized using the Softmax function. We find that both implicit differentiation
([31]) and the removal of the alpha masks from the decoder play a crucial role in improving the note
discovery performance of our MusicSlots model. Increasing the stride length along the time axis
to 2 also improves its performance, though not as significantly as the other two design choices. By
combining these improvements in the model architecture and training optimization, we finally arrive
at our MusicSlots model without any alpha masking.

13

Table 14: Note discovery results on single-instrument BachChorales (JSB) and JazzNet datasets for
MusicSlots models with different choices for fnorm function. Mean and std-dev. are reported across
5 seeds.

Datasets Mask Norm. Note MSE ↓ mIoU ↑

JSB-single
MusicSlots-soft 75.32 ±37.63 0.68 ±0.08

MusicSlots-sigm 18.21 ±3.40 0.83 ±0.02

MusicSlots-none 22.44 ±7.07 0.81 ±0.03

JazzNet-single
MusicSlots-soft 114.09 ±22.72 0.63 ±0.04

MusicSlots-sigm 49.05 ±5.98 0.75 ±0.03

MusicSlots-none 44.49 ±0.62 0.76 ±0.02

Table 15: Architectural ablations on the MusicSlots for unsupervisd note discovery task. ‘Default’
here refers to the MusicSlots model with the setup used for object discovery in [19] , where stride =
(1, 1) in the convolutional encoder layers and the spatial broadcast decoder outputs softmax alpha
masks.

Dataset Model Note MSE ↓ mIoU ↑

JazzNet-multi

Default 70.05 ±23.61 0.70 ±0.07

Default + stride_length = (1, 2) 51.31 ±1.89 0.76 ±0.04

Default - Softmax Alpha Mask 39.08 ±6.35 0.79 ±0.02

Default + Implicit Differentiation 32.56 ±9.84 0.83 ±0.00

MusicSlots 19.95 ±1.89 0.90 ±0.01

JSB-multi

Default 100.77 ±52.91 0.60 ±0.15

Default + stride_length = (1, 2) 60.22 ±14.56 0.76 ±0.04

Default - Softmax Alpha Mask 40.06 ±14.60 0.78 ±0.04

Default + Implicit Differentiation 59.34 ±22.01 0.79 ±0.04

MusicSlots 13.47 ±0.90 0.91 ±0.01

VAE Ablation Table 16 shows the ablation study for the choice of β in the VAEs on the multi-
instrument Bach Chorales and JazzNet datasets. We observe that higher β results in worse downstream
property prediction performance on both datasets and the best results are achieved using β = 0.5.

Table 16: Note property prediction performance of baseline VAEs with different β values. β = 1
corresponds to the vanilla VAE model. As we increase β, the property prediction performance using
the latent representations from the β-VAE worsens on both JSB and Jazznet multi-instrument datasets.

β
JSB-multi Jazznet-multi

Val-Acc. Test-Acc. Val-Acc. Test-Acc.

0.5 97.85 ±0.13 97.42 ±0.06 97.00 ±0.38 81.53 ±0.77

1.0 96.66 ±0.34 96.21 ±0.35 94.37 ±0.55 71.55 ±4.77

2.0 92.23 ±0.66 90.74 ±0.94 73.93 ±1.97 47.90 ±8.59

4.0 82.07 ±0.83 78.95 ±1.42 47.51 ±3.71 11.31 ±1.92

14

C Note Discovery Visualization

We provide additional visualization samples of note discovery results from our MusicSlots model
on the JazzNet and Bach Chorales datasets, including both the success and failure cases. We also
visualize the effect of using Softmax alpha masks in MusicSlots for note discovery in Figure 11.

G
r
o
u
n
d
-T
r
u
t
h

M
u
s
ic
S
lo
t
s

Figure 5: Unsupervised note discovery result on the JSB-multi-instrument dataset. The MusicSlots
accurately predicts the ground-truth note spectrograms. It also learns to capture the background (i.e.
silence) in the remaining slots that are not matched with the ground-truth notes.

G
r
o
u
n
d
-T
r
u
t
h

M
u
s
ic
S
lo
t
s

Figure 6: Unsupervised note discovery result on the Jazznet-multi-instrument dataset. Similar to the
example visualized in Figure 5, MusicSlots successfuly decomposes the given chord spectrogram
into its constituent note spectrograms and distribute the background across the remaining slots.

15

G
r
o
u
n
d
-T
r
u
t
h

M
u
s
ic
S
lo
t
s

Figure 7: Unsupervised note discovery result on the JSB-multi-instrument dataset. On this example,
MusicSlots successfully predicts most of the ground-truth note spectrograms. However, it overseg-
ments one of the notes (Note 1) by assigning it to slot 1 and 7.

G
r
o
u
n
d
-T
r
u
t
h

M
u
s
ic
S
lo
t
s

Figure 8: Unsupervised note discovery result on the JazzNet-multi-instrument dataset. Similar to the
example shown in Figure 7, MusicSlots performs oversegmentation by using three slots (slot 1, 5 and
7) to model note 1.

16

G
r
o
u
n
d
-
T
r
u
t
h

M
u
s
ic
S
lo
t
s

Figure 9: Visualization of a failure case of MusicSlots on the JSB-multi-instrument dataset. Only two
of the four matched predictions accurately capture the harmonic structure of the ground-truth note
spectrograms.

G
r
o
u
n
d
-T
r
u
t
h

M
u
s
ic
S
lo
t
s

Figure 10: Visualization of a failure case of MusicSlots on the Jazznet-multi-instrument dataset.
MusicSlots completely fails to predict notes 1 and 3 in its slot reconstructions. It also fails to model
the background in any of the slots.

17

G
ro

u
n
d
-T

ru
th

N
o
 A

lp
h
a
 M

a
s
k

S
o
ft

m
a
x
 A

lp
h
a
 M

a
s
k

Figure 11: Qualitative performance comparison of MusicSlots without alpha masks (row 2) and
MusicSlots with softmax-normalized alpha masks (row 3) on the JazzNet single-instrument dataset.
MusicSlots with softmax alpha masks leaves unnatural gaps in the lower frequency bins where there
is a strong degree of overlap between the note spectrograms. MusicSlots without any alpha mask does
not introduce these artifacts and models the overlapping regions more accurately than its softmax
normalized counterpart.

18

	Introduction
	Method
	Related Work
	Results
	Conclusion
	Experimental Details
	Multi-Object Music Dataset
	Model Architecture Details
	Training Details
	Evaluation Details

	Additional Results
	Note Discovery Visualization

