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Abstract

Singing voice conversion (SVC) is a technique to enable an arbitrary singer to
sing an arbitrary song. To achieve that, it is important to obtain speaker-agnostic
representations from source audio, which is a challenging task. A common solution
is to extract content-based features (e.g., PPGs) from a pretrained acoustic model.
However, the choices for acoustic models are vast and varied. It is yet to be ex-
plored what characteristics of content features from different acoustic models are,
and whether integrating multiple content features can help each other. Motivated
by that, this study investigates three distinct content features, sourcing from WeNet,
Whisper, and ContentVec, respectively. We explore their complementary roles in
intelligibility, prosody, and conversion similarity for SVC. By integrating the mul-
tiple content features with a diffusion-based SVC model, our SVC system achieves
superior conversion performance on both objective and subjective evaluation in
comparison to a single source of content features. Our demo page and code can be
available here.

1 Introduction

Singing Voice Conversion (SVC) aims to convert the voice of a singing signal to the voice of a target
singer without changing the underlying content and melody [8]. It can enable an arbitrary singer
to sing an arbitrary song. SVC can be used for various applications including music entertainment,
singing voice beautification, vocal education, and art creation.

In recent years, conducting singing voice conversion with non-parallel data [1, 10, 19, 22–24, 34]
attracts more attention, since it does not rely on the scarce parallel singing voice corpus. Figure 1
displays the common pipeline for the non-parallel SVC. Its main idea is to first disentangle the speaker-
agnostic representations from the source audio, and then inject the desired speaker information to
synthesize the target (usually by an acoustic decoder and a subsequent waveform synthesizer). For
modeling speaker-agnostic representations, the common solutions are to utilize content-based features
from a pretrained acoustic model, such as extracting PPGs (or BNFs) from an Automatic Speech
Recognition (ASR) model [1, 19, 22, 23] or a self-supervised model [9, 10].

With the rapid development of self-supervised learning and speech recognition oriented acoustic
models, the choices for acoustic models are vast and varied. However, the characteristics of different
content features during singing voice conversion are yet investigated. For example, in the voice
conversion (VC), some researchers find that content features from the CE-loss-trained ASR model
could be good at modeling prosody, while those from the CTC-loss-trained ASR model could be
skilled in disentangling timbre [43]. Compared with speech, singing voice owns a wider range
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Figure 1: A classic pipeline of the non-parallel singing voice conversion system.

Table 1: A summary of WeNet, Whisper and ContentVec.

Model Pretrained Task Training Objective Pretrained Data Architecture

WeNet
[39]

ASR, supervised by
linguistic labels

CTC,
Next Token Prediction
(character-level)

Text-only transcription
from Gigaspeech/Wenet-
speech (10k hours English
/Chinese speech)

Encoder-decoder
Conformer [3] or
Transformer [33]

Whisper
[27]

Multitask including
multilingual ASR,
speech translation,
spoken language identi-
fication, etc., large-scale
weak supervision

Next Token Prediction
(byte-level [29])

680k hours multilingual
data, including both text-
only and time-aligned
transcription

Encoder-decoder
Transformer [33]

ContentVec
[26]

Self-supervised learning
which conditions on
disentangling speakers

Masked Token
Prediction (frame-level)

Librispeech (1k hours
English), using only speech
but no any transcription

Encoder-only
Transformer [33]

of pitch and energy variations and more diverse timbres (Section 4.3). However, there are some
questions unclear: Which kind of content features do we need for SVC? Would integrating multiple
content features help each other during conversion?

Motivated by that, this study aims to explore the specific roles of different content features. To
obtain the content features, the existing acoustic model is designed to make the model’s latent
representations align with linguistic information (such as characters or phonemes). In other words,
the content information of the features depends on the level of linguistic supervision which the
acoustic models are pretrained with. Based on that, we investigate the three distinct content features
(Table 1), sourcing respectively from:

• WeNet [39]: the acoustic model is by supervised trained on linguistic labels (i.e., characters).
It is pretrained by text-only transcription data;

• Whisper [27]: the acoustic model is under weak supervision by large-scale multitask data.
It is pretrained by both text-only and time-aligned transcription data;

• ContentVec [26]: the acoustic model conducts self-supervised learning which conditions on
disentangling speakers. It is pretrained by only speech data and there is no explicit linguistic
supervision.

We perform a systematic analysis with the three acoustic models and assess their performance in
terms of prosody, intelligibility, and conversion similarity for SVC. Moreover, we find that integrating
different content features could be compatible and complementary, which can further improve the
singing voice conversion performance.

In addition to the exploration of content features, this paper also presents our efforts in improving
the waveform synthesizer (i.e., Vocoder) for a high-quality singing voice. Specifically, we conduct
a comprehensive analysis of the characteristics between speech and singing voice (Section 4.3).
By using a pretrained speech BigVGAN [17] vocoder as our foundation model, we research why
fine-tuning it by singing voice data can be helpful, and illustrate what the specific benefits are. Based
on the above, we present an SVC system that contains a diffusion-based [23] acoustic decoder that
uses multiple content features and our fine-tuned BigVGAN singing voice vocoder. The experimental
results of objective and subjective evaluation verify our proposed system is superior to the existing
state-of-the-art SVC methods.
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2 Related Work

2.1 Singing Voice Conversion

The early singing voice conversion researches aim to design parametric statistical models such as
HMM [32] or GMM [13, 14] to learn the spectral features mapping of the parallel data. Since the
parallel singing voice corpus is hard to collect on a large scale, the non-parallel SVC [1, 24], or
recognition-synthesis [9] SVC, becomes popular in recent years. To obtain speaker-agnostic features
for the non-parallel SVC, extracting PPGs from pretrained ASR models as content-based features
is one of the most common methods [1, 19, 22, 23]. Some researchers also propose to use the low
quefrencies of MFCC as the content features [42]. Besides obtaining content features from supervised
acoustic models, extracting BNFs from the self-supervised model [9, 10] has also been adopted.
Researchers of [34] point out that self-supervised features like HuBERT [5] can also supply the
acoustic reference to improve the prosody for SVC. However, most existing works utilize a single
source of content features. This study aims to research whether integrating multiple content features
would be complementary to singing voice conversion.

2.2 Singing Voice Vocoder

The singing voice has broader and more diverse frequency bands than speech, making it hard to
adopt a speech vocoder in the singing voice domain explicitly. The existing works of singing voice
vocoders devote to tackling the synthesis challenges in both time and frequency domains. On the
one hand, to reconstruct the spectrogram precisely in the frequency domain, [6] proposes to generate
audio in a multi-band process, which allows the generator to pay attention to different frequency
bands adaptively. HPG [31] adopts anti-aliasing techniques to improve the reconstruction of high-
frequency parts for vocoders. On the other hand, to keep the synthesized audios consistent in the time
domain and avoid the “glitches”, SingGAN [7] and NSF-HiFiGAN [35] introduce the sine excitation
modeling for F0, which can stabilize the auditory quality. SawSing [37] suggests modeling phase
continuities explicitly. In a word, the existing works focus more on improving the representation or
the architecture of vocoders. However, this study makes efforts from the data perspective, which
explores how singing voice data can improve a speech vocoder and what the specific benefits are.

3 Methodology

The proposed SVC framework that can leverage multiple content features is illustrated in Figure 2.
Note that the multiple content features can be plugged into conversion model of any architecture. The
diffusion-based conversion model here is just to exemplify, whose architecture is same as [23]. After
obtaining the predicted mel spectrograms, we utilize a waveform synthezier, which is a BigVGAN
vocoder [17] finetuned by the singing voice data (Section 3.3), to get the synthesized audio.

3.1 Features Extraction and Multiple Content Features Fusion

We utilize the multiple content features (WeNet, Whisper, and ContentVec), the acoustic/musical
features (F0 and Energy), and the speaker features (Speaker ID) for singing voice conversion. The
key challenge is how to extract and then fuse them, especially for the fusion of multiple content
features sourcing from different pretrained models. We will describe it in details in this section.

3.1.1 Features Extraction

For the content features, the WeNet, Whisper, and ContentVec are all designed as the Transformer-
like [33] architecture. We utilize the encoder’s output as the content features. Formally, given the
utterance u and the acoustic model M, the extracted content features cM = M(u) ∈ RTM×dM ,
where M can be either WeNet, Whisper, or ContentVec, TM is the length of frames, and dM is the
latent representation dimension of the model M.

For the acoustic/musical features, we follow [23] to obtain the quantized F0 and energy features. We
adopt the trainable embedding layers to get the F0 embeddings f ∈ RT×d and energy embeddings
e ∈ RT×d, where d is set as 384 in our experiments.
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Figure 2: Diffusion-based SVC framework that leverages multiple content features.

For the speaker identity, we adopt a look-up table and use a trainable embedding layer to learn the
speaker embeddings s ∈ Rd.

3.1.2 Features Fusion

Usually, the different pretrained model that could produce content features owns different acoustic
parameters (such as sampling rate and frameshift) [26, 27, 39]. As a result, the content feature
cM sourcing from the different model M will have the different frame length TM, which makes it
challenging to fuse the multiple content features of different sources.

To address it, when fusing multiple content features, we first downsample (or upsample) the content
features cM to c̃M ∈ RT×dM based on their frameshift parameters. Subsequently, we use the linear
layer to project c̃M into ĉM ∈ RT×d, whose dimension is same to the acoustic/musical features.
Finally, we adopt the adding fusion strategy to merge all kinds of features:

c = ĉM1 ⊕ ĉM2 ⊕ ĉM3 ⊕ f ⊕ e⊕ ŝ (1)

where M1, M2, and M3 means WeNet, Whisper, and ContentVec. ŝ ∈ RT×d represents the
frame-level speaker feature, which is obtained by repeating s as T times. ⊕ means the element-wise
adding operation.

3.2 Diffusion-based Conversion Model

The diffusion-based model has been proven effective in singing voice generation related tasks [20,
23, 31]. To investigate the effectiveness of different content features and their integration for SVC,
we employ a diffusion model similar to DiffSVC [23] to be the conversion model.

During training, the main idea of diffusion model is to learn a noise predictor based on specific
conditions [4, 23]. In this study, we adopt the fused features c as the conditions, and consider the
mel spectrogram as the objective (y0) to train the diffusion-based conversion model. Following [23],
we adopt a noise predictor like WaveNet [25] architecture. At every diffusion step t, given the noise
predictor F , we first sample a Gaussian noise ϵ and then minimize the MSE loss:

Lt = MSE(ϵ̂, ϵ), where ϵ̂ = F (t, c,yt), (2)

where yt is the noisy acoustic features at the step t.

During conversion, we obtain the predicted mel spectrogram by giving the diffusion model a random
Gaussian noise ϵ and the conversion conditions c. To obatain c, given any source audio, we extract
its content and energy features and leave them unchanged. To convert the speaker identity, we inject
a target speaker ID (which is seen in the training) to obtain the speaker features. For F0 features, we
conduct the musical key transposition1 to make the target singer could singing the source song in
his vocal range. Specifically, following the baseline B01 of [8], we shift the source F0 features by

1https://en.wikipedia.org/wiki/Transposition_(music)
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multiplying a factor, which is computed as the ratio between the F0 median of the target speaker’s
training data and the median of the source audio.

3.3 Waveform Synthesizer

To train a high-quality singing voice vocoder, we leverage a pretrained BigVGAN [17] speech vocoder
and fine-tune it with singing voice data. The reasons why we can develop a singing voice vocoder
from a pretrained speech one are two folds. On the one hand, speech and singing voice are both
human sounds, whose waveform structures are homogeneous [30]. Besides, compared with speech,
high-quality and copyrighted singing voice data is scarcer and harder to access. Therefore, conducting
transfer learning from a pretrained speech vocoder to a singing voice vocoder is viable and will
save financial and computational costs. On the other hand, compared with speech, there is a wider
range of pitch and energy and more diverse timbres in the singing voice (Section 4.3). A vocoder
trained by only speech data will produce problems like glitches and poor frequency reconstruction
when synthesizing for singing voices. In Section 4.3, we will display the specific improvements after
fine-tuning BigVGAN with singing voice data.

4 Experiments

We conduct experiments to answer the following evaluation questions:

• EQ1: How effective are the different content features? Could they help each other after
integrating?

• EQ2: Could singing voice data improve a pretrained speech vocoder and why? If it does
promote, what are the specific benefits after fine-tuning?

• EQ3: How effective is the proposed system compared to the existing SVC approaches?

4.1 Experimental Setup

4.1.1 Evaluation Tasks

We adopt three conversion tasks to evaluate: one is the conversion from M4Singer [41] to
Opencpop [36]. We randomly sample 100 utterances from M4Singer [41] as source audios. The
other two are provided by the Singing Voice Conversion Challenge (SVCC) 20232 [8], including
an in-domain and a cross-domain conversion. There are 48 source utterances for each task. For
the training data, we utilize five datasets: Opencpop [36], SVCC training data [8], VCTK [38],
OpenSinger [6], and M4Singer [41]. There are 83.1 hours speech and 87.2 hour singing data in total.

4.1.2 Evaluation Metrics

For objective evaluation, following [8], we adopt Mel-cepstral distortion (MCD) [16], F0 Pearson
correlation coefficient (F0CORR), F0 Root Mean Square Error (F0RMSE), Character Error Rate
(CER) which is obtained with the recognition results of Whisper [27], and Dembed which estimates
the speaker similarity by using RawNet-3 [11] as the objective metrics. For subjectivce evalution, we
invite 12 volunteers who are experienced in the audio generation areas to conduct the Mean Opinion
Score (MOS) evaluation in terms of naturalness and similarity. The naturalness score ranks from
1 (“Bad”) to 5 (“Excellent”), and the similarity score ranks from 1 (“Different speaker, sure”) to 4
(“Same speaker, sure”).

4.1.3 Baselines

We adopt two existing SVC approaches as the baselines:

• FastSVC [22]: It is an official baseline provided by SVCC 2023. It utilizes a pretrained
conformer [3] to extract content features, which is similar to WeNet. We adopt the official
pretrained model to conduct conversion.

• SoVITS: It is one of the most popular open-source project in the SVC area. It utilizes
ContentVec as the content features and uses a flow-based conversion model.

2http://vc-challenge.org/
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Table 2: Statistics of the fine-tuned datasets for our singing voice vocoder. VCTK and SVCC
(cross-domain) are two speech datasets, while the others are singing voice datasets.

Dataset Language #Hours #Utterances #Speakers

VCTK [38] English 82.9 33,971 109
SVCC (cross-domain) [8] English 0.2 311 2

OpenSinger [6] Chinese 51.9 43,075 74
Popbutfy [21] English 30.7 28,971 24
M4Singer [41] Chinese 29.7 20,896 19
PopCS [20] Chinese 5.9 1,651 1
Opencpop [36] Chinese 5.2 3,756 1
CSD [2] English, Korean 4.1 2,864 1
SVCC (in-domain) [8] English 0.4 309 2
PJS [15] Japanese 0.4 291 1

Total (Speech / Singing Voice) 83.1 / 128.3 34.2k / 101.8k 111 / 123

Table 3: Objective evaluation results of different content features and their integration. Dembed
represents an objective metric for speaker similarity. The best and the second best results of every
column (except those from Ground Truth) are bold and italic.

Content Features MCD (↓) F0CORR (↑) F0RMSE (↓) CER (↓) Dembed (↑)

Ground Truth 0.000 1.000 0.0 12.9% 1.000

WeNet 10.324 0.203 423.4 38.2% 0.743
Whisper 8.229 0.524 297.3 18.9% 0.858
ContentVec 8.972 0.491 361.0 22.1% 0.809

WeNet + Whisper 8.345 0.540 284.2 16.8% 0.856
WeNet + ContentVec 8.870 0.525 329.5 19.9% 0.758
Whisper + ContentVec 8.201 0.548 279.6 16.9% 0.886

WeNet + Whisper + ContentVec 8.249 0.572 278.5 16.1% 0.865

4.1.4 Implementation Details

For WeNet, we use the official models pretrained by 10k hours Wenetspeech and 10k hours Gi-
gaspeech to extract content features. For Whisper, we use the multilingual MEDIUM model. For
ContentVec, we use the official 500-CLASS model preatrained by 1k hours Librispeech. For
BigVGAN vocoder, we adopt the offical 24KHZ_100BAND model that pretrained by 585 hours
LibriTTS [40]. We fine-tune it with the five training datasets and additional four datasets, in total
83.1 hours of speech and 128.3 hours of singing voice data (Table 2). The sampling rate is 24kHz,
the mel bands are 100, and the hop size is 256.

4.2 Performance of Different Content Features (EQ1)

To evaluate the effectiveness of different content features alone for singing voice conversion, in this
section, we only use the content features as the conditions of the diffusion-based conversion model.
We choose Opencpop [36] as the training data (target speaker) and use M4Singer [41] as source
audios. The experimental results are illustrated in Table 3.

It can be observed that: (1) When using single source of content features, Whisper outperforms the
others among all the metrics. The multitask training and the large-scale weak supervision make it
contain comprehensive speaker-agnostic information. Besides, ContentVec behaves better than WeNet
although it uses less training data. It indicates that under speech data pertaining, self-supervised
representations could be more robust and generalized to other domains like singing voice. (2) During
integration, sometimes introducing WeNet will be harmful to the spectrogram reconstruction and
speaker similarity. We speculate that the WeNet is only pretrained on speech, which is not well robust
for the singing voice. (3) Integrating multiple content features could be helpful in most cases (see
the representative samples here). It reveals their complementary roles in spectrogram reconstruction,
prosody, intelligibility, and speaker disentanglement.
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(a) F0 (b) Energy (c) LTAS (t-SNE)

Figure 3: The distributions of F0, energy, and LTAS (t-SNE results) for speech and singing voice.
Compared with speeches, the singing voices own a larger and wider range of F0 and energy. The
singing timbres are also distinct and more varied.

Table 4: Improvements after fine-tuning a pretrained speech vocoder by singing voice data. The
“before/after” means the results before and after fine-tuning.

Dataset MCD (↓) F0RMSE (↓) PESQ (↑) FAD (↓)

VCTK 2.11 / 0.96 355.6 / 169.0 4.16 / 4.19 1.27 / 0.01
SVCC (cd) 1.90 / 1.33 96.1 / 21.1 3.81 / 3.87 1.46 / 0.28

OpenSinger 2.27 / 1.15 69.5 / 18.5 3.90 / 4.03 0.53 / 0.03
Popbutfy 2.11 / 0.96 56.3 / 52.5 ◦ 4.01 / 4.12 0.41 / 0.18
M4Singer 2.32 / 1.01 62.9 / 17.1 3.97 / 4.15 0.64 / 0.03
PopCS 2.38 / 1.34 143.8 / 37.3 3.98 / 4.12 0.53 / 0.03
Opencpop 3.14 / 1.36 48.1 / 8.8 3.83 / 4.02 0.36 / 0.02
CSD 2.96 / 1.37 97.8 / 33.3 3.71 / 3.86 0.43 / 0.05
SVCC (id) 2.37 / 1.24 82.7 / 21.1 3.84 / 3.95 0.33 / 0.24
PJS 2.09 / 0.86 176.8 / 47.1 3.88 / 4.00 0.31 / 0.01
∗ All the improvements are significant (p-value is less 0.01) except for ◦

4.3 Effect of Singing Voice Data for Vocoder (EQ2)

To investigate the similarity or distinction between singing voice and speech, we conduct a preliminary
data analysis from the aspects of F0, energy, and speaker timbre. Specifically, we analyze the
differences between singing voice and speech in the range of F0 and energy, and the distribution of
the Long-Term Average Spectrum (LTAS). Note that LTAS represents the formant and resonance
features of the human vocal tract, which can reveal the timbre characteristics [18]. We use the ten
datasets of Table 2 for analysis. In Figure 3, we observe that there are larger and wider ranges of F0
and energy in singing voices. Besides, singing timbres distribute distinctly from speaking ones and
are more diverse. Given these specific features of the singing voice, it is necessary to explore whether
fine-tuning a pretrained speech vocoder with singing voice data can be helpful.

Furthermore, we adopt MCD, F0RMSE, PESQ [28], and FAD [12] as metrics to explore the perfor-
mance change after fine-tuning speech vocoder with the singing voice data. For VCTK, OpenSinger,
Popbutfy, and M4Singer, we select a random speaker for each dataset as the unseen speakers for
testing. For SVCC and the other four single-speaker datasets, we randomly sample 5% utterances for
each dataset for testing. All the other data is used for training. The results is illustrarted in Table 4. It
indicates that the fine-tuned vocoder gets promoted among spectrogram reconstruction (MCD), pitch
modeling (F0RMSE), auditory quality (PESQ), and perceptual audio quality (FAD).

Besides of the quantitative results, we also conduct a qualitative analysis to investigate the specific
benefits. For example, in Figure 4, the reconstruction for high-frequency bands is improved after
fine-tuning. We provide more cases on our demo page, which displays the problems of the original
speech vocoder (such as glitches) and how much fine-tuning can alleviate them.
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Figure 4: The mel spectrograms before and after fine-tuning. It can be observed that the fine-tuned
vocoder can reconstruct the energies of the high-frequency bands better.

Table 5: Objective evaluation results of different systems. Ours (W+C) and Ours (W+W+C) represent
our systems which use Whisper + ContentVec and WeNet + Whisper + ContentVec as content features
repesctively.

Task System F0CORR (↑) F0RMSE (↓) CER (↓) Dembed (↑)

M4Singer
↓

Opencpop

Ground Truth 1.000 0.0 12.9% 1.000

FastSVC 0.636 273.9 49.2% 0.410
SoVITS 0.801 166.4 17.5% 0.622

Ours (W+C) 0.804 175.7 13.8% 0.744
Ours (W+W+C) 0.801 167.7 16.6% 0.714

SVCC
(in-domain)

Ground Truth 1.000 0.0 10.5% 1.000

FastSVC 0.799 232.2 38.0% 0.448
SoVITS 0.966 57.6 17.0% 0.725

Ours (W+C) 0.968 59.2 17.7% 0.891
Ours (W+W+C) 0.954 60.4 16.3% 0.869

SVCC
(cross-domain)

Ground Truth 1.000 0.0 7.2% 1.000

FastSVC 0.526 441.2 47.2% 0.341
SoVITS 0.966 52.1 17.1% 0.746

Ours (W+C) 0.967 57.1 15.1% 0.795
Ours (W+W+C) 0.970 52.7 14.5% 0.799

4.4 Performance of Our Proposed System (EQ3)

Based on the explorations for multiple content features and singing voice fine-tuned vocoder, we
further research the effectiveness of our whole SVC system.

4.4.1 Objective Evaluation

We adopt F0CORR, F0RMSE, CER, and Dembed as the metrics to objectively evaluate the prosody,
intelligibility, and conversion similarity of different systems.

In Table 5, it indicates that: (1) In general, our proposed multiple content features based diffusion
model outperforms FastSVC and SoVITS, especially in the aspects of intelligibility (CER) and
conversion similarity (Dembed); (2) Comparing between the two in-domain tasks of different languages
– SVCC (in-domain) in English, and M4Singer → Opencpop in Mandarin, we observe that the CER
performances are comparable, while the F0 modeling and speaker disentanglement are worse for
M4Singer → Opencpop. We speculate that modeling pitches for the tone language like Mandarin
could be harder than the intonation language like English for SVC; (3) Comparing between SVCC
in-domain and cross-domain tasks, on the one hand, the CER of cross-domain conversion is lower.
The reason could be that content features are pretrained with more speech data than the singing voice,
resulting in better intelligibility. On the other hand, the conversion similarity of cross-domain is
worse, which is caused by the distinct distribution between singing voice timbres and speech timbres
just like shown in Figure 3c; (4) In comparison between Table 3 and Table 5, we observe that although
introducing the auxiliary F0 features improves prosody significantly, it can also make the speaking
style of the converted audio near to the source, resulting in a worse conversion similarity to the target.
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Table 6: MOS evaluation results (with 95% confidence interval) on SVCC in-domain task. The full
scores of Naturalness and Similarity are 5 and 4.

System Naturalness (↑) Similarity (↑)

Ground Truth 4.67 ± 0.18 3.17 ± 0.29

FastSVC 1.02 ± 0.04 1.23 ± 0.15
SoVITS 2.98 ± 0.31 2.74 ± 0.31

Ours (Whisper + ContentVec) 3.52 ± 0.26 2.95 ± 0.30
Ours (WeNet + Whisper + ContentVec) 3.48 ± 0.29 2.56 ± 0.35

4.4.2 Subjective Evaluation

As is described in Section 4.1, we invite 12 volunteers who are experienced in the audio generation
areas to conduct MOS evaluation on SVCC in-domain task. For naturalness (or similarity) evaluation,
every subject rates 4 randomly sampled utterances (or utterance pairs) for every system. Given the
five systems of Table 6, a total of 20 tests will be displayed to the subject in random order. The
specific source of every sample is anonymous to subjects.

In Table 6, we can see that: (1) our systems which leverage multiple content features are better in
terms of naturalness and conversion speaker similarity than FastSVC and SoVITS; (2) introducing
WeNet could even damage the performance. We speculate that WeNet is pretrained by only speech,
which is not well robust when modeling the singing voice; (3) The integration of Whisper and
ContentVec outperforms the others, especially in the conversion similarity, which is close to the
ground truth.

5 Conclusion

In this paper, we investigate three distinct content features sourcing respectively from WeNet, Whisper,
and ContentVec. We perform a systematic analysis of the three and explore their complementary roles
in terms of prosody, intelligibility, and conversion similarity for singing voice conversion. Moreover,
we analyze the differences between the singing voice and speech, and explain why fine-tuning a
speech vocoder with singing voice data could improve. The experimental results on the SVCC
in-domain evaluation data suggest that more sources of content features can be complementary, but it
will degrade the similarity when WeNet is included. We will leave this to future research.
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