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Abstract

Music source separation is focused on extracting distinct sonic elements from
composite tracks. Historically, many methods have been grounded in supervised
learning, necessitating labeled data, which is occasionally constrained in its diver-
sity. More recent methods have delved into N-shot techniques that utilize one or
more audio samples to aid in the separation. However, a challenge with some of
these methods is the necessity for an audio query during inference, making them
less suited for genres with varied timbres and effects. This paper offers a proof-of-
concept for a self-supervised music source separation system that eliminates the
need for audio queries at inference time. In the training phase, while it adopts a
query-based approach, we introduce a modification by substituting the continuous
embedding of query audios with Vector Quantized (VQ) representations. Trained
end-to-end with up to N classes as determined by the VQ’s codebook size, the
model seeks to effectively categorise instrument classes. During inference, the
input is partitioned into N sources, with some potentially left unutilized based on
the mix’s instrument makeup. This methodology suggests an alternative avenue for
considering source separation across diverse music genres. We provide examples
and additional results online 1.

1 Introduction

Source separation is a crucial domain in signal processing, aiming to extract individual components
from mixed signals. This challenge has been widely addressed in the audio domain across various
fields, including universal source separation, (multi-)speaker separation, and music source separation
(MSS). MSS stands as a significant sub-domain, with the goal of isolating individual instruments,
vocals, or other sonic elements from a composite track. Traditionally, MSS has been driven by
supervised methods that necessitate large amounts of labeled stems. However, dedicated, openly
available datasets are rare, and limited in the number of instrument classes. As a result, the default
benchmark in MSS only involves four classes: vocals, drums, bass, and other.

In order to lift this limitation, methods for unsupervised, semi-supervised, or self-supervised source
separation have been investigated in recent years. A particular trend in semi- and self-supervised
methods involves zero- one- or few-shot learning approaches. These models typically rely on one or
multiple audio samples from a specific instrument class to guide the separation process. In practice,
it is easier to find datasets of unlabelled or weakly labeled musical sounds, contained in public
collections like AudioSet [1], Freesound [2], or proprietary datasets. Consequently, using audio
queries instead of instrument labels makes it possible to train self-supervised source separation
models on such datasets (e.g., by using different segments of a stem as query and separation target).
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However, the necessity of having the respective audio query available at inference time is a limiting
factor in N-shot source separation. Particularly in contemporary popular or electronic music, the
constituents can have peculiar timbres, like different synthesizers, guitar amplifiers, unusual samples,
or sound effects. Therefore, ideally, a source separation system should be able to separate different
instrument classes at inference time without requiring additional information.

This work introduces a proof-of-concept self-supervised music source separator that does not require
audio queries at inference time. The method is a self-supervised query-based source separation
system at train time, but we replace the continuous embedding space of the query audios with VQ
embeddings. The model is trained end-to-end using a maximum of N classes, which is the codebook
size of the VQ layer, to learn a helpful clustering of the respective instrument classes. During
inference, the model divides the input mix into N sources. Depending on the presence of the different
instrument classes in the mix, some outputs may remain empty.

2 Method

We propose a self-supervised MSS system that does not require audio queries during inference. The
model is trained in a query-based fashion using random crops of stems as queries and targets. However,
instead of using a continuous embedding space for the queries, we introduce a vector quantization
layer to categorize the instrument classes into a discrete codebook. The overall architecture consists of
three main components: A Style Encoder E that embeds the audio query into a latent space, a Vector
Quantizer Q that quantizes the continuous embedding into a discrete codebook, and a Generator G
that generates the separated source conditioned on the quantized code.

Let x be an unlabelled audio stem. We first randomly crop x two times to obtain a target excerpt
xtarg and a reference excerpt xref . The target excerpt is linearly mixed with k ∼ U(0,K) additional
random stems to obtain the mixture xmix. The reference excerpt xref is fed into the Style Encoder
E to produce a d-dimensional embedding zref = E(xref ). This continuous embedding is then
quantized by a Vector Quantization layer Q to obtain a quantized embedding ẑref = Q(zref )
corresponding to the closest entry in a codebook of size N , representing the maximum number of
different sources allowed by the system. The Generator G takes as input the mixture xmix and the
quantized embedding ẑref , and is tasked with separating the target source xtarg from the mixture:

x̂targ = G(xmix, ẑref ).

We parameterize the Generator with a U-Net [3] model which takes magnitude spectrograms as input
and outputs magnitude and phase spectrograms which are then combined into a waveform sample via
the iSTFT operator. The model is inspired by the Autoencoder proposed in [4] and is thus trained
in a similar fashion. Differently from [4], the model is trained fully end-to-end using the following
objectives: The Reconstruction loss uses the same reconstruction objective Lrec proposed in [4],
which consists of a L1 loss between log-spectrograms and a multi-scale spectral loss [5], [6] between
the output x̂targ and target xtarg. Details about the reconstruction objective can be found in the
original paper. The Adversarial loss utilizes the hinge adversarial loss Ladv [7] to implicitly model
the phase spectrogram as:

Ladv = Extarg
[min(0,−1 +D(log(|STFT(xtarg)|)))]

+Ex̂targ [min(0,−1−D(log(|STFT(x̂targ)|)))],
where D is a Discriminator model. Lastly, the Commitment loss is the VQ-specific objective Lvq

that ensures the encoder outputs are close to the quantized codes from the codebook: Lvq =
||zref − sg(ẑref )||22, with sg denoting the stop-gradient operator. The codebook loss is realized
through exponential moving average (EMA) updates, as suggested in [8], [9].

The overall training loss is a weighted sum of these objectives:
L = Ladv + λrecLrec + λvqLvq.

At inference time, the model takes as input the mixture xmix and each of the final quantized embed-
dings and iteratively outputs N estimated sources, without requiring any audio query. Depending on
the actual instruments present in the mixture, some of the outputs may be silent.

This approach eliminates the need for audio queries during inference. The VQ-based categorization
acts as an instrument classifier that is learned in a self-supervised manner through the source
separation task. Furthermore, by training fully end-to-end, the model learns a discrete embedding
space specifically tailored for the task of source separation.

2



Mix  4

 5

 6

 7

 8

 9

 0

 1

 2

 3

10

11

12

13

14

15

Figure 1: Mel-spectrograms of an example input mix and
separated outputs. For each separation from 0 to 15 the
Generator is conditioned on the corresponding quantized
embedding. By cross-referencing this visualization with the
histogram in Figure 2, it is possible to recognize specific
instruments, such as Vocals for cluster number 14.

Figure 2: Distribution of the different
classes of the test set for each quan-
tized embedding found by the system.
We notice a clear clustering of certain
sources (OH, Bass, Vocals), while for
other classes (Toms, Snare, Ride) the
distribution is shared across different
clusters.

3 Implementation Details

The Generator, Style Encoder and Critic are fully convolutional models using standard residual
blocks [10] with group normalization layers [11] with 8 groups. The Generator is based on a U-Net
architecture where the conditioning information is introduced via FiLM layers [12] at every block.
The Style Encoder takes mel-spectrograms with 128 frequency bins as input and produces a single
512-dimensional vector via a Global Average Pooling (GAP) layer. The VQ layer is initialized with
N = 16 embeddings via 10 iterations of k-means clustering of the first input training batch. As
proposed by [13], we use cosine similarity instead of Euclidean distance and we factorize the codes
in a lower dimensional space with dimensionality of 8 to improve codebook usage. The codebook
loss is implemented via EMA with a factor of 0.99. Regarding the STFT parameters used during
training, we adopt the ones proposed by [4]. We choose λrec = 2.5 and λvq = 100. During training
we use random crops of 1.5 seconds with a sampling rate of 44.1 kHz to train the system. While we
ensure that all xref crops are not completely silent, we allow xtarg crops to be silent, since it allows
the model to produce a silent sample when the quantized embedding of a source that is not present in
the input mix is used. We train the model for 1 million iterations with a batch size of 32, using Adam
[14] with β1 = 0.5 and β2 = 0.9 as the optimizer.

4 Experiments and Results

OH Misc Crash 1 Vocals Kick Toms Crash 2 Bass Snare Gtr Ride
L1 14.51 16.55 19.30 15.06 24.84 23.60 19.39 16.68 15.70 14.98 17.75

L1 rand 23.64 22.47 22.92 22.25 23.85 31.14 23.97 22.61 23.18 23.40 21.65

Table 1: L1 distance between log-spectrograms of separated and true sources for each class in the test
set. For comparison, we also calculate the L1 distance when the model is conditioned on a random
quantized embedding instead of the target one. The difficulty of the model to correctly separate ’Kick’
from other drums results in high L1 for that class.

We train the system on an internal collection of 20,000 unlabelled stems. To evaluate the separation
performance, we use an internal collection of 1,000 labelled stems with the following classes: OH,
Misc, Crash 1, Crash 2, Vocals, Kick, Toms, Bass, Snare, Gtr, Ride. We first visualize in Figure
2 the distribution of the different classes for each final quantized embedding, or cluster, found by
the system. It is worth noting how the data distribution of training samples differs from the limited
labelled collection used for testing. For example, training stems may not contain clearly separated
percussive instruments, despite them being separated in different classes for the testing samples. This
can explain the sub-par clustering performance on some specific classes used for testing. Considering
the specific capability of the system to perform separation of arbitrary learned sources, evaluation
using standard metrics in the field of source separation [15] can be challenging, since different clusters
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can represent a single instrument class, and some uncommon instrument classes can be excluded
from the clustering altogether. In Table 1 we evaluate the separation performance of the model in
terms of L1 distance between generated and target log-spectrograms for each class in the test set.
More specifically, different crops serve as the target sample, which is mixed with 4 other sources to
create the input mixture, and as the input to the Style Encoder to produce the quantized embedding
used as conditioning. For comparison, we also calculate L1 distances when a random quantized
embedding is used as conditioning. We also visualize in Figure 1 mel-spectrograms of an example
test input mix and of the corresponding separations performed by the system, one for each of the
codebook embeddings. By cross-referencing Figure 2, we can notice specific instruments being
separated. However, we can also notice hallucination behavior that is characteristic of the proposed
system: considering that we explicitly train a generative model to perform the task, the Generator
may produce realistic separated outputs that are not actually present in the input mix.

5 Related Work

Supervised neural network-based MSS has been tackled with multi-layer perceptrons [16]–[18],
CNNs and RNNs (and combinations thereof) [19]–[23], UNets [24], [25] and with Transformers
[26]. In such supervised approaches, a specific model is typically trained for each source type.
Self-supervised paradigms involve permutation-invariant training for universal source separation
[27], and an explicit instrument-clustering approach for MSS [28]. Unsupervised approaches to
source separation have been investigated using mixture-invariant training [29] and unsupervised
blind source separation with Variational Autoencoders [30], [31]. Audio query-based (i.e., N-shot)
approaches exist in supervised fashions for one-shot [32] and few-shot [33] learning. Such query-
based approaches are suitable for self-supervised training, where two segments of a stem are typically
used as a separation target and a query, leading to zero-shot [34] and one-shot [35] architectures. Such
methods typically use a single separation network with conditioning that is derived from embeddings
of an audio query. Such a single separation model is also used in a meta-learning approach [36] and
for universal source separation with weakly labelled data [37], the latter uses conditioning from a
separate audio tagging model. The model proposed in this work is a one-hot conditioned UNet like
in [25] that is trained in a self-supervised one-shot fashion like in [35]. In addition, we perform an
unsupervised clustering to inform the separation module like in [28]. However, in contrast to [28],
we perform this clustering in an end-to-end fashion using a VQ embedding space.

6 Conclusion

This work introduced a proof-of-concept for a self-supervised MSS system that does not require audio
queries during inference. The method adopts a fully end-to-end query-based approach during training,
using random crops of stems as queries and targets. However, instead of a continuous embedding
space, we introduced a vector quantization layer to categorize unlabelled sources into a discrete
codebook. We demonstrate both the potential and current limitations of the proposed approach.
On one hand, the model shows a clear ability to cluster certain common instrument classes fairly
consistently. This indicates the feasibility of learning meaningful representations in a completely
self-supervised manner using the source separation task as a proxy and without the explicit use of
contrastive learning techniques. On the other hand, we also highlight some flaws that need to be
addressed in future work. Firstly, the model can exhibit a hallucination behavior, where it tends
to generate realistic outputs even for sources that are not present in the input mixture. While this
phenomenon is not uncommon in adversarial networks, it is undesirable for source separation where
the objective is to filter out existing sources. Hallucinations could be alleviated by training on a
dataset with a more balanced class distribution or by increasing the weight of the reconstruction loss.
Secondly, the perceived audio quality of the separated outputs is currently lacking, with noticeable
artifacts. This suggests that the model has not learned a robust generalized representation of the
diverse instrument classes.

Overall, this work should be considered a first step towards fully self-supervised source separation
models that do not rely on audio queries at test time. The clustering-based separation indicates a
promising direction, but more research is required to improve the fidelity of the outputs and reduce
hallucination behavior. With further development, end-to-end self-supervised source separation could
provide flexibility to handle the wide range of sounds that occur in real-world music.
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