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Abstract

Recent advances in sequence-to-sequence modelling enabled new powerful multi-
task models in text, vision, and speech domains. This work attempts to leverage
these advances for music. We propose MusT3 (Music-To-Tags Transformer), a
novel model for fine-grained music understanding. First, we design the unified
music-to-tags form, which enables us to cast any music understanding task as
sequence prediction problem. Second, we utilize Transformer-based model to
predict that sequence given music representation. Third, we leverage multi-task
learning framework to train a single model for many tasks. We validate our
approach on four tasks: beat tracking, chord recognition, key detection, and vocal
melody extraction. Our model performs significantly better than the current state-
of-the-art models on two of these tasks, while staying competitive on the remaining
two. Finally, in controlled experiment, we demonstrate that our model can reuse
knowledge between tasks, leading to better performance on low-resource tasks
with limited training data.

1 Introduction

Music understanding focuses on extracting meaningful features from music. For fine-grained music
understanding tasks, the extracted features are specific to a certain time in a piece of music. Since
these features can often be only understood by trained musician (e.g. chord triad), the data labelling
is expensive. Consequently, there is limited training data available, which can also vary between
different music understanding tasks. In order to utilize the available data well, we argue that one
should train a single unified multi-task model capable of reusing knowledge between the tasks.

Sequence-to-sequence models have been successfully used for multi-task learning for text (Raffel
et al. [2020], Xue et al. [2020]), vision (Hu and Singh [2021], Bhattacharjee et al. [2022], Seong
et al. [2019]) and speech (Moritz et al. [2020]). Inspired by T5 (Raffel et al. [2020]), we also use the
unified form for expressing any task. However, unlike their work, we do not fine-tune our model to
task at hand. Instead, we train a single model simultaneously for multiple tasks. This is similar to
MulT (Bhattacharjee et al. [2022]), but, unlike that work, we use a single transformer head for all the
tasks.

There has been a significant amount of prior work for beat tracking, chord recognition, and key
detection. Most of the work has been focused on single task (Böck and Davies [2020], Hung et al.
[2022], Zhao et al. [2022], Park et al. [2019], Korzeniowski and Widmer [2017], Jiang et al. [2018]).
There is some work trying more than one task (Lee and Slaney [2007], Wu et al. [2020], Fuentes et al.
[2019], Kim and Nam [2023], Mauch et al. [2009b]), but, to our knowledge, there is no work trying
more than two tasks. This work attempts to model many tasks by a single, unified architecture.

Automatic music transcription (AMT), which includes voice melody extraction, is often thought of as
multi-task problem (Lu et al. [2023], Manilow et al. [2020] Lin et al. [2021], Cheuk et al. [2022],
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Hung et al. [2019] Bittner et al. [2018], Gardner et al. [2021]). However, we argue that to transcribe
different instruments (including voice) is not to perform semantically different functions. Thus, in
our opinion, AMT should not be viewed as multi-task model in its traditional meaning. Nevertheless,
the closest work to ours is MT3 (Gardner et al. [2021]), which also uses a single representation
for multiple transcription tasks, and also, leverages modern sequence-to-sequence architecture (T5).
However, in MT3’s MIDI-like representation, the length of the output sequence increases with the
number of tasks, making it unsuitable for modelling many tasks. Our time-synchronous representation
addresses this issue.

2 The Unified Model

Music-to-Tags: We formulate any music understanding task as sequence-to-sequence problem. We
use pre-trained model to represent a piece of music as sequence of continuous embeddings. By
prefixing the sequence with the task, we create the input to our model. The output of the model is the
sequence of tags. Each output tag describes a single frame of the input music. Which frame a tag
describes is determined by task temporal resolution, and the position of the tag in the output sequence.
For example (below), in 2Hz key detection task for 3 seconds music, the output will be 6 tags long,
and the second tag would describe the second half of the 1st second. Every task can have different
temporal resolution. From computational reasons, our model can’t be applied to a whole song at
inference time. Instead, we split a song in smaller overlapping chunks, feed them into the model and
combine tags probabilities from multiple outputs.

Multi-task learning: Task loss is defined as an average Binary Cross Entropy loss per tag for output
sequence. We define multitask loss as a weighted sum of task losses, and use GradNorm (Chen et al.
[2018]) to set the tasks weights. During training, we partition a training batch equally among all the
tasks. As an alternative to multi-task learning, we have also tried multi-task mixture approach (Xue
et al. [2020], Gardner et al. [2021]). However, in our preliminary experiments, this yielded worse
results.

Music representation sequence: We use the in-house representational learning model (Won et al.
[2023]) to obtain music representation sequence for music. The model is based on BestRQ architec-
ture(Chiu et al. [2022]), and it has been trained on 160 hours of in-house music data. The model’s
output temporal resolution is 25Hz: for 10 seconds-long music used in this work, the model generates
250 long representation sequence. We refer to Won et al. [2023] for more details on the model.

Sequence-to-sequence model: LLaMa (Touvron et al. [2023]) architecture is used as our sequence-
to-sequence model. LLaMa is a model based on Transformer (Vaswani et al. [2017]) with minor
architectural changes (we refer to Touvron et al. [2023] for details). In addition, our model consists of
embedding layer for task and the output layer for tags (linear layer + GeLu (Hendrycks and Gimpel
[2016]) + linear layer). The total number of model parameters is 108 millions.

3 Music Understanding Tasks

We focus on four fine-grained music understanding tasks: beat tracking, chord recognition, key
detection and vocal melody extraction. For every task, we use the same input length of 10 seconds.
To split a song into 10 seconds chunks, we apply sliding window with hop factor of 2 seconds. As a
result, we get multiple output probabilities for a single tag. We combine probabilities by summation,
followed by normalization. We provide the summary of the task in the Table 1, while we give some
task-specific details below.

Beat tracking: The task combines beat and downbeat tracking with tempo prediction. The size of
tag dictionary for all three subtasks is 303 (extra 300 tags for tempo). We add noise model for labels,
and use DBN-based model (Böck et al. [2016]) for post-processing. Our training dataset consist of
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Table 1: Summary of music understanding tasks. Task output lengths are computed for 10 seconds
long music input. *Total output sequence length for beat tracking includes additional single tempo
tag

Task Training Temporal # Outputs Task output Size of
dataset size resolution per frame length tag dictionary

Beat tracking 654.6 hours 25 Hz 1 251* 303
Chord recognition 119 hours 25 Hz 2 500 20
Key detection 678.4 hours 0.5 Hz 1 10 25
Vocal melody 74.1 hours 25 Hz 2 500 121

All tasks 1526.1 hours - - - 469

Ballroom (Gouyon [2006]), Beatles (Davies et al. [2009]), Hainsworth (Gouyon et al. [2006]), HJDB
(Fujinaga et al. [2012]), RWC (Goto et al. [2002]), Simac (Holzapfel et al. [2012]), Harmonix (Nieto
et al. [2019]), SMC (Gouyon [2006]). We also use our in-house dataset, which contains 50k clips and
a total size of 580 hours.

Chord recognition: The task is further split into recognizing chord root and chord triad recognition:
the former is represented by 13 (extra tag for unknown), and the latter by 7 tags. We use pitch shifting
as data augmentation technique. Our training dataset is combination of Isophonics (Mauch et al.
[2009a]), Billboard (Smith et al. [2011]), HookTheory training set (Donahue et al. [2022]), RWC
(Goto et al. [2002]), and USPOP (Berenzweig et al. [2004]).

Key detection: A key can be represented by 25 different tags (extra tag for unknown key). The training
dataset includes Isophonics (Mauch et al. [2009a]), Billboard (Smith et al. [2011]), HookTheory
training set (Donahue et al. [2022]). We also use our in-house dataset, which contains 50k clips and a
total size of 580 hours.

Vocal melody extraction: The task is further split into predicting notes (represented by 61 tags) and
notes onset (60 tags). For training dataset, we use MIR-ST500 (Wang and Jang [2021]), and our
in-house dataset, which contains 860 songs with a total size of 50 hours.

4 Experiments

Configuration: Our LLaMa model uses 8 layers, 16 heads and embedding dimension of 1024. This
accounts to the model with 108 million parameters in total. The batch size is set to 32, which is
equally splitted between all four task (i.e. single task’s batch size is 8). We use AdamW (Loshchilov
and Hutter [2017]) as an optimizer (learning rate = 3e− 5, weight_decay= 0.1, Betas (0.9, 0.98)
and eps= 1e− 8). Number of warmup steps is set to 5000. We use GradNorm (with alpha= 0.5) to
learn task loss weights.

Evaluation & Baselines: We use the mir_eval package (Raffel et al. [2014]) for task evaluation. We
report Beat and Downbeat F-Measure for beat tracking, root accuracy and major/minor weighted
accuracy for chord recognition, weighted accuracy (with error tolerance that gives partial credits
to reasonable errors) for key detection, and Onset F1, Onset Pitch F1 and Onset Pitch Offset F1
for vocal melody extraction. As test dataset, we use GTZAN (Marchand et al. [2015]) for beat
tracking, HookTheory test set (Donahue et al. [2022]) for chord recognition and key detection, and
MIR-ST500 test set (Wang and Jang [2021]) for vocal melody extraction. We use SpecTNT-TCN
(Hung et al. [2022]) as a baseline for beat tracking, BTC (Park et al. [2019]) for chord recognition,
CNN (Korzeniowski and Widmer [2017]) for key detection and Perceiver Tf (Lu et al. [2023]) for
vocal melody extraction.

Results: The Table 2 presents the comparison of MusT3 model with the baselines. We trained two
version of the model: "Single-Task MusT3" for single task data only, and "Multi-Task MusT3" for
all four tasks. Single-Task MusT3 performs much better than the baselines on two tasks: chord
recognition and key detection. The results for beat tracking and vocal melody extraction are com-
petitive (the model is better on two of the metrics, but worse on the remaining three). Next, we
compare Single-Task MusT3 model with its multi-task equivalent: the results are almost equal with
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Table 2: The comparison of MusT3 with the SOTA single-task models. Bold font marks the best
result, while italics marks the second best result (the higher value, the better).

Model Beat Chord Key Vocal melody
tracking recognition detection extraction

SpecTNT-TCN 0.887 / 0.756 - - -
BTC - 0.803 / 0.769 - -
CNN - - 0.732 -
Perceiver TF - - - 0.798 / 0.777 / 0.490

Single-Task MusT3 0.851 / 0.767 - - -
Single-Task MusT3 - 0.839 / 0.798 - -
Single-Task MusT3 - - 0.809 -
Single-Task MusT3 - - - 0.779 / 0.752 / 0.518

Multi-Task MusT3 0.852 / 0.764 0.829 / 0.789 0.810 0.787 / 0.761 / 0.513

the exception of chord recognition (drop of around 1%). Multi-Task MusT3 still performs much
better than the baselines on chord recognition and key detection, and the results for remaining two
tasks remain competitive.

Knowledge sharing between tasks: In order to investigate whether the model can share knowledge
between tasks, we design the following experiment. We train Single-Task MusT3 models on key
detection task only, and Multi-Task MusT3 model on key detection and chord recognition tasks. The
Figure 1 shows how the performance of both models changes depending on the size of key detection
dataset. For four different sizes, chord recognition data improves the results of key detection task.
However, the improvement becomes less significant once more data is available.

5 Conclusions
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Figure 1: The effect of changing the size of key detection
dataset on the performance of Single-Task and Multi-Task
MusT3 models.

In this work, we have developed
a novel multi-task model for fine-
grained music understanding. Firstly,
the model performs better than single-
task SOTA baselines on two tasks
(chord recognition and key detection),
while remaining competitive on an-
other two. Secondly, in controlled
experiment, we have shown that the
model is capable of reusing knowl-
edge between tasks. Thanks to the
unified music-to-tags form and multi-
task learning framework, the model
can be easily expanded by new tasks,
which we aim to do next (in particu-
lar, adding musical structure should
be beneficial). Furthermore, we plan
to scale up our model: the current
size of the model is relatively small
for the standard of modern deep learn-
ing. Finally, we think that the model
can yield better results if it’s jointly
trained with representational learning
model.
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