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Abstract

In short videos and live livestreams, speech, singing voice, and background music
often overlap and obscure each other. This complexity creates difficulties in
structuring and recognizing the audio content, which may impair subsequent
ASR and music understanding applications. This paper proposes a multi-task
audio source separation-based ASR model called JRSV, which Jointly Recognizes
Speech and singing Voices. Specifically, the separation module separates the mixed
audio into distinct speech and singing voice tracks while removing background
music. The CTC/attention hybrid recognition module recognizes both tracks.
Online distillation is proposed to improve the robustness of recognition further. A
benchmark dataset is constructed and released to evaluate the proposed methods.
Experimental results demonstrate that JRSV can significantly improve recognition
accuracy on each track of the mixed audio.

1 Introduction

The audio signals recorded in live streams and short videos usually contain speech, singing voices,
background music, and sound effects. These signals often overlap and obscure each other, which
increases the difficulty of speech and lyrics recognition. However, the subsequent recommendation
systems and searching engines need speech transcripts and lyrics. It is necessary to improve the
accuracy of speech and lyrics recognition in these overlapping scenarios.

Conventionally, cascade systems are used to recognize multi-track speech from monaural audio [1].
However, the mismatch between the separated audio and the natural audio hurts the recognition
performance. Moreover, previous separation models, such as deep clustering [2], permutation
invariant training (PIT) [3], and TasNet [4], do not distinguish the type of the separated tracks.
Extended PIT [5, 6, 7, 8, 9] and serialized output training (SOT) [10] recognize the mixed audio in
an end-to-end way and show good performance. However, these methods also cannot distinguish the
type of the recognized tracks. Besides, PIT-based methods meet permutation problem, which may
confuse automatic speech recognition (ASR) models.

This paper proposes a unified model called JRSV to Jointly Recognize Speech and singing Voices.
JRSV provides the types of audio tracks and recognizes the content of the speech and singing voices.
This is the first time to investigate how to jointly separate and recognize speech and singing voices
in overlapping scenes. The contributions are summarized as follows. (1) multi-task audio source
separation (MTASS) [11, 12] -based JRSV is proposed to recognize the content of the speech and
singing voices simultaneously. The MTASS module separates the mixed audio into a speech track
and a singing voice track. It also removes the background music at the same time. As PIT-free in
MTASS, JRSV avoids the permutation and selection problems. Then the ASR module recognizes the
content of the two tracks. (2) We adopt two-stage training and employ online distillation to make the

∗denotes equal contribution.
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Figure 1: An overview of JRSV system. s̃ denotes the mixed audio. X̃ denotes the mixed spectral
magnitude. X̂speech and X̂singing denote the separated spectral magnitudes of speech and the singing
voice. yspeech and ysinging denote the text sequence of speech and singing voice.

encoded representations of separated tracks approximate the representations of the clean audio track
to improve the robustness of the model. (3) To evaluate the proposed methods, we build and release a
benchmark dataset called Dual-Track Speech and singing Voice Dataset (DTSVD). The experimental
results demonstrate that JRSV outperforms the cascade system by achieving a relative reduction of
41% in character error rates (CERs) for speech and 57% in CERs for singing voices.

2 Proposed methods

2.1 The MTASS module

We adopt the Conformer-based [13, 12] MTASS network to separate speech and singing voices. In
detail, after a short-time Fourier transform (STFT), the spectral magnitude is fed into the Conformer-
based separation network. In the last layer, the separated spectral magnitude of speech and singing
voices are mapped out using two output layers. Three kinds of losses are applied to MTASS:
magnitude-based mean absolute error (MAE) loss, discriminate separation loss [12], and consistency
loss [14]. The detailed loss function is formulated as follows:

LMTASS = Lmag − λLdis + γLcst, (1)

where λ and γ are scale parameters to balance each loss. We set λ to 0.1 and γ to 0.3.

2.2 The ASR module

We employ the U2 (CTC/attention rescoring) structure [15, 16, 17] as the ASR model. The model
consists of three parts. Given the separated spectral magnitude, the Conformer-based encoder encodes
the acoustic representations. Then, the CTC decoder uses prefix beam search to generate candidates.
And then, the attention decoder rescores the candidates to find the best hypothesis.

The ASR module is trained with CTC/attention joint loss:

LASR = αLCTC + (1− α)Latt, (2)

where LCTC is computed with a forward-backward algorithm [18] for the CTC decoder, and Latt is
computed with token-wise cross-entropy for the attention rescorer.

Inspired by [19, 20, 21], we propose online distillation to further improve the representation ability of
the conformer encoder. Specifically, we attempt to make the encoded acoustic representations of the
separated spectral magnitude approximate the encoded representations of the original clean spectral
magnitude. The final loss is:

LASR = αLCTC + (1− α)Latt + βLdistil, (3)

where the α (= 0.3) and β (= 0.3) are the hyperparameters to balance the values during training.
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Table 1: Preliminary experiment: ASR models directly recognize the test sets of DTSSVD without
separation. speech means the model trained with only speech data. singing means the model
trained with only singing data. multi means the modeled trained with both speech and singing data.

CER% (Speech / Singing Voices)
Unmixed Overlap 0.0 Overlap 0.1 Overlap 0.3 Overlap 0.5 Overlap 1.0

speech 6.3 / 88.2 48.1 / 245.7 49.4 / 233.5 58.5 /186.2 69.1 / 169.1 75.3 / 159.7
singing 86.6 / 9.7 185.5 / 95.6 206.3 / 94.3 167.6 / 89.5 150.8 / 90.6 145.1 / 91.6
multi 6.3 / 9.4 57.9 / 222.4 60.3 / 236.9 67.9 / 190.9 76.2 / 171.8 80.6 / 163.8

Table 2: The SDR improvments of MTASS models on the test sets with different overlap ratios.

SDRi
Overlap Ratios 0.0 0.1 0.3 0.5 1.0

speech 46.0 26.7 18.0 15.9 14.6MTASS singing 19.4 18.0 15.4 14.4 13.7
speech 44.8 27.0 18.5 16.5 15.1+ Ldis singing 19.1 17.6 15.0 14.1 13.3
speech 49.0 27.3 18.7 16.6 15.4+ Lcst singing 19.7 18.2 15.6 14.6 14.0

2.3 Two-stage training

Counter-intuitively, we find that jointly optimizing the LMTASS and LASR does not improve the
performance. Even the system cannot converge when trained from scratch. We analyze two reasons:
(1) The spectral magnitude of the mixed audio contains ambiguous information, which obstacles
the optimization procedure. (2) the high-level LASR is not compatible with the low-level LMTASS.
Therefore, we propose a curriculum learning [22]-based two-stage training procedure: 1) we train the
MTASS module; 2) the ASR model is trained, and the MTASS module is fixed during training. We
will discuss the reason why joint training does not improve performance in subsection 4.4.

3 DTSSV dataset

DTSSV dataset is built based on AISHELL-1 [23], OpenSinger [24], and MusDB18 [25]. In
MusDB18, only background music is adopted. We randomly sample speech audio, a singing voice,
and a background music segment and mix them with different overlaps. In detail: (1) Normalize
the amplitude of sspeech, ssing, and smusic. (2) Draw signal-to-noise ratios (SNRs) in decibels from
uniform distributions: U(−10, 2) for sspeech and ssing, and U(−15, 2) for smusic. (3) Mix the ssing and
the smusic. Then randomly sample an overlap ratio from {1.0, 0.5, 0.3, 0.1, 0.0} and mix sspeech. For
the development set and the test set, we randomly select a singing voice and a music segment for
each speech audio. For the training set, the three audio sources are mixed on-the-fly during training.

4 Experiments and analysis

4.1 Setup

For MTASS, the Conformer-based model [13, 12] consists of 16 Conformer blocks. The dimension of
each block (dmodel) is 256. The number of attention heads is 8. Relative positional encodings are used.
The inner dimension of MLP (dffn) is 1024. The kernel size of the convolution is 33. The window
length is 1024, with the FFT is 256. We use Adam optimizer [26] with a learning rate = 1e− 3. All
the MTASS models are trained for 200 epochs.

For CTC/attention hybrid ASR, the model first uses a 2 dimensional CNN for subsampling. 12
Conformer blocks as the encoder, and 6 Transformer decoder blocks as the rescorer. The dimension
of each block is 256. The number of attention heads is 4. The inner dimension of MLP (dffn) is 2048.
The kernel size of the convolution is 15. For the cascade system, we use the 80-dim FBANK features.
For JRSV, the input dimension is 513. The optimizer is Adam [26], and we use the Noam learning
rate schedule [27] with 10000 warm-up steps. All the ASR models are trained for 100 epochs. For
the two-stage training for JRSV, we first load the pre-trained MTASS and then train the ASR module.
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Table 3: The CERs of the cascade system on the test sets with different overlap ratios.
CER % (Speech / Singing Voices)

Overlap Ratios 0.0 0.1 0.3 0.5 1.0 Avg.
ASR / MTASS 9.2 / 28.4 12.8 / 29.6 24.3 / 32.5 29.3 / 35.9 31.3 / 33.8 21.4 / 32.1
+ Ldis 9.3 / 27.3 13.0 / 28.3 24.5 / 30.8 29.1 / 33.9 31.5 / 31.4 21.5 / 30.3
+ Ldis + Lcst 9.0 / 25.2 12.7 / 26.5 23.8 / 29.1 28.4 / 31.9 30.6 / 29.2 20.9 / 28.4

Table 4: The CERs of the JRSV on the test sets with different overlap ratios.
CER % (Speech / Singing Voices)

Overlap Ratios 0.0 0.1 0.3 0.5 1.0 Avg.
JRSV-t 10.1 / 22.0 12.1 / 22.6 17.9 / 25.2 20.2 / 26.7 20.4 / 28.1 16.1 / 24.9
JRSV-f 8.2 / 13.1 9.7 / 13.8 14.1 / 14.7 15.9 / 15.5 16.6 / 16.5 12.9 / 14.7
JRSV-f-d 7.6 / 10.8 9.3 / 11.6 13.6 / 12.0 15.3 / 12.8 15.9 / 13.1 12.3 / 12.1

We evaluate the system in two aspects: separation performance and recognition accuracy. Signal-
to-distortion ratio [28] improvements (SDRi) are used to evaluate the separation performance. For
recognition accuracy, we compute the CERs for the speech and singing voice tracks.

4.2 Preliminary experiment: directly recognizing the mixture

The performance of the ASR model without MTASS tells the impacts of the complex acoustic
conditions on ASR. In Table 1. ASR-speech, ASR-sing, and ASR-multi denote the ASR model
trained on the speech data, singing data, and both speech and singing data, respectively. Models
trained on the matched data perform well compared to the corresponding unmixed data. ASR-multi
performs best on the unmixed speech and singing voices. However, all models fail to recognize the
mixed audio. Because many speech contents are recognized and inserted, which causes insertion
errors, the CERs of the singing voice are larger than 100%. This experiment demonstrates that the
ASR model fails to recognize mixed audio in complex acoustic conditions directly.

4.3 Recognizing with the cascade system

The cascade system first separates the mixed audio into the speech track and the singing voice track
and then recognizes with ASR-multi. First, we evaluate the performance of the MTASS models
in Table 2. MTASS achieves a significant SDR improvement. The discriminative loss Ldis and the
consistent loss Lcst can further improve the SDR. Then we evaluate the recognition performance in
Table 3. Ldis brings an improvement for sing voices. When using both Ldis and Lcst, the system
achieves the best performance.

4.4 Recognizing with JRSV

Comparing Table 4 to Table 3, JSRV-f with the frozen MTASS achieves significantly better perfor-
mances than ASR-multi / MTASS cascade models. With online distillation, the performance is further
improved. On average, the JRSV-f-d achieves a 41%/57% relative CER reduction compared with
the best cascade system. Counter-intuitively, JRSV-t (trainable MTASS) does not achieve a good
performance. We have searched many weights for LMTASS and LASR but do not achieve a positive
result. We analyze a possible reason that the MTASS module and the ASR module play different
roles: the MTASS module processes the low-level features, and the ASR module processes the
high-level semantic representations. The two objects are not compatible. The ASR loss influences
the low-level feature extraction, which affects the performance.

5 Conclusions and future work

We propose JRSV to jointly recognize speech and singing voices. The MTASS module separates
the mixed audio into distinct speech and singing voice tracks while removing background music.
The CTC/attention hybrid recognition module recognizes both tracks. Online distillation is proposed
to further improve recognition accuracy. A benchmark dataset is constructed. Experimental results
demonstrate that the proposed methods can significantly improve recognition accuracy on each track
of the mixed audio. In the future, we will analyze the reason why the joint optimization of LMTASS
and LASR does not bring better performance in more detail.
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