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Abstract

We introduce the text-to-instrument task, which aims at generating sample-based
musical instruments based on textual prompts. Accordingly, we propose Instrument-
Gen, a model that extends a text-prompted generative audio framework to condition
on instrument family, source type, pitch (across an 88-key spectrum), velocity, and
a joint text/audio embedding. Furthermore, we present a differentiable loss function
to evaluate the intra-instrument timbral consistency of sample-based instruments.
Our results establish a foundational text-to-instrument baseline, extending research
in the domain of automatic sample-based instrument generation.

1 Introduction

The synthesis of sounds and corresponding interfaces for controlling their timbre form a seminal
topic in audio research [1]. Meanwhile, generative models have been successfully applied to images
and text, where their convincing ability to draw novel samples from learned data distributions has
already proved to be disruptive [2]. It becomes only natural to consider the implications of such
technologies when applied in the context of audio and music production.

Several generative models have been proposed for neural audio synthesis. NSynth [3] uses a WaveNet
autoencoder to synthesize pitched instrument samples. GANSynth [4] considers an instantaneous
frequency representation to model signal phase. Differentiable digital signal processing (DDSP) [5]
and related works [6, 7] construct autoencoders with differentiable synthesizer back-ends to promote
controllability. A real-time variational autoencoder design was introduced in [8]. GANstrument [1]
utilizes a feature descriptor achieved through adversarial domain confusion. These models all lack an
interface for controlling audio generation via text input. Consequently, we have witnessed a surge in
the development of text-to-audio systems generating compelling audio examples from text prompts.
One particular family of approaches rely on neural audio codecs [9, 10] representing audio compactly
as a set of discrete codes whose sequence can be learned using transformer-based language models.
While initial approaches targeted speech [11, 12] and environmental sounds [13], follow-on works
adapt techniques for text-to-music, generating entire musical passages from text [14, 15].

In this paper, we introduce a new task which we call text-to-instrument, whose aim is to generate
musical instruments given a text prompt in a zero-shot manner. Under this task, we explicitly model
a musical instrument as a collection of waveforms sampling an instrument’s time-domain response
across the axes of pitch (the fundamental frequency of a note) and velocity (the intensity with which a
note is played). In this paradigm, we move beyond the constraints of any single parametric synthesizer,
avoiding the expressivity limitations tied to its specific implementation details. As in [1], we note
that injecting prior domain knowledge into the generative process via techniques like DDSP is indeed
interesting, but is complementary to this work as such approaches naturally constrain the manifold
that system outputs can live on [7]. Unlike text-to-music, which predominantly involves generation of
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a single audio example for the text prompt at inference, text-to-instrument systems must generate an
ensemble of audio examples such that they are individually stabilized in pitch and timbrally consistent
with one another, so that they can be assembled into a playable instrument that can be triggered in
predictable ways. In summary, our primary contributions are:

• We introduce the text-to-instrument task.

• We propose InstrumentGen, a catered text-to-instrument solution expanding on a state-of-
the-art text-prompted generative audio model to be, alongside a contrastive language-audio
pretraining (CLAP) embedding [16] used as a joint audio/text representation, additionally
conditioned on instrument family, source type (i.e. acoustic, electronic, or synthetic), pitch
across the entire 88-key range of a standard full-length piano keyboard, and velocity.

• We present a differentiable loss to objectively assess the intra-instrument timbral consistency
(TC) of sample-based instruments for our task by generalizing a (potentially multi-scale)
log mel spectrogram loss [5, 17], and use it as an evaluation metric in this work.

2 Proposed Method

InstrumentGen is based on the MusicGen [15] architecture as a foundation, which consists of a neural
audio codec and a language model designed to predict acoustic tokens based on conditioning signals.
To improve audio quality, we replace the original EnCodec architecture [18] used in MusicGen with
the Descript audio codec (DAC) [10], which addresses the issue of codebook collapse in previous
models while achieving higher audio fidelity. Additionally, we introduce a set of new conditioning
signals to the system: this includes instrument family, source type, pitch, and velocity, alongside a
joint language-audio embedding [16]. This conceivably allows instrument samples to be inferred
from either text or audio prompts, where we focus on the former but can also perform the latter. Fig. 1
gives an overview of our method.

2.1 Compressed Audio Representation

In this work, we employ the DAC as an intermediate representation of the monophonic input waveform
x ∈ R1×L (cf. Fig. 1), resulting in the discrete codes c ∈ RC×N . Here, L denotes the length of the
waveform, N the sequence length of the acoustic tokens, and C the number of codebooks used. The
DAC is trained on a broad spectrum of audio types, thereby making it also suitable for generating
tonal one-shot instrumental sounds. We deliberately opt to model our task at a sampling rate of
44.1 kHz, as this would ultimately be a minimum requirement for real-world music production
applications. We employ the corresponding pretrained model weights and fix them during training.

2.2 Language Model

For modeling the discrete audio tokens of single-shot instrumental samples, we consider a smaller,
60M parameter variant of the MusicGen transformer decoder [15], both to prevent overfitting and
to provide faster inference. The resulting model consists of 12 decoder layers with 16 attention
heads per layer and a transformer model dimension of 512. As in MusicGen [15], we predict and
reconstruct audio from tokens of the 4 most significant [10] codebooks at each frame. Our predictor
model learns to select tokens from codebooks of size 1024 using delayed pattern interleaving [15].
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Figure 1: Overview of proposed method. Dashed lines indicate modules with fixed and pretrained
weights during training. Source type and instrument family are not provided during inference.
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2.3 Conditioning

Categorical conditioning We use a categorical conditioning scheme for instrument family θi,
source type θt, pitch θp, and velocity θv, that consists of a lookup table (LUT) and a fully connected
layer that maps the dimension of the categorical feature space to the inner dimension of the language
model. When used, the instrument family and source type attributes in our dataset serve as supple-
mentary metadata-driven timbral cues for generation. For pitch, we model the P = 88 range of notes
spanned by a standard full-length keyboard, corresponding to musical instrument digital interface
(MIDI) note numbers 21-108, and note that this is a significant expansion relative to the chroma
feature used in [15]. We consider V = 5 velocity layers, according to the values that are actually
present within our training dataset, corresponding to MIDI velocities 25, 50, 75, 100, and 127.

Joint text and audio conditioning Wu et al. [16] introduced a CLAP framework, which is designed
to process both audio and text data and generate corresponding embeddings by using two separate
encoders: one for audio and another for text. Both embeddings are further processed by a 2-layer
MLP with ReLU activation to bring them into a fixed dimension of 512. The resulting model
leverages a contrastive loss function, and is trained on musical signals to encourage the audio and text
embeddings to be similar when they come from matching pairs. The audio encoder uses the HTS-AT
(transformer-based) architecture [19], while the text encoder leverages RoBERTa [20].

When CLAP embeddings are used, we quantize them via residual vector quantization (RVQ) with
learned codes, yielding θclap. Since the various conditioning signals used here reflect global cues θ
for steering audio generation, they are fused with the transformer decoder by means of cross-attention.

3 Timbral Consistency Measure

Our task necessitates that waveforms comprising a generated instrument are timbrally consistent
to one another. We provide an objective means to measure this relation, considering that signals
within an instrument may vary in pitch. Specifically, mel-frequency cepstral coefficients (MFCCs)
are ubiquitously known as timbral descriptors, as a cepstral lifter whose quefrencies correspond to the
first handful of MFCCs can be used to estimate a signal’s spectral envelope [21]. We integrate this
notion into a differentiable objective function which generalizes a multi-scale log mel spectrogram
loss [17], aggregating over all possible pairwise comparisons within the instrument. For an ensemble
of waveforms X ∈ RK×L comprising an instrument (with K = PV ), the TC measure is defined as

LTC(X) =

K∑
i=1

K∑
j=i+1

S∑
s=1

∥yi − yj∥11 (1)

over S scales, where for an arbitrary audio waveform xk from X we have

yk = D−1
Ms

Dms
log [Bs |Fs(xk)|p] (2)

For each scale s, Fs denotes the respective short-time Fourier transform, Bs denotes an Ms-band
mel transformation matrix, and Dms

∈ RMs×Ms denotes a discrete cosine transform basis matrix
that has been masked with zeros for row indices greater than ms MFCCs. When ms = Ms (i.e. all
available MFCCs are considered), D−1

Ms
DMs

= I. With ms < Ms, we effectively apply cepstral
liftering that can neutralize the effect of the pitched excitation within the signal (cf. Fig. 2). We
consider S = 1, Ms = 80, and ms = 13, and p = 1 for demonstrative purposes in this work.
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Figure 2: Log mel spectrograms of guitar_acoustic_010-024-100 (C1, left) and
guitar_acoustic_010-049-100 (C#3, right) (a) without and (b) with liftering. Liftering can
allow examples of differing pitch to be more readily compared to one another in the timbral sense.
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4 Experimental Results

We train models on the NSynth dataset [3], pruning it according to our specified 88-key pitch range.
We resample the dataset, captured at 16 kHz, to a target rate of 44.1 kHz, viewing it as a proxy in lieu
of an equally comprehensive full-band alternative. Models are trained to minimize the cross-entropy
Lce between predicted codes ĉ and ground truth c, over 1M training steps with AdamW optimizer, a
batch size of 32, and a cosine-annealed schedule with initial learning rate of 10−3 as in [15].

We consider two models to evaluate the fundamental capabilities of the system under investigation.
In the first model, instrument timbre is specified from a closed set of instrument family and source
type fields available as metadata in the dataset. Our second model is truly a text-to-instrument model,
where we leverage CLAP to enable text input at inference. In this case, the instrument family and
source type attributes help guide training (subject to dropout with 70% probability), but do not need
to be specified at inference. Pitch and velocity are expected as inputs during training and inference
across all models in order to generate a complete sample-based instrument. We explicitly note that
we did not condition models on more specific instrument metadata because training and evaluation
datasets constitute disjoint sets of instruments, and cannot compare to existing text-to-music systems
because they are constrained in their specificity of pitch and velocity needed to carry out our task.

We compare models quantitatively (cf. Tab. 1), generating instrument samples reflecting those in the
NSynth test set according to a fixed input cue representing each instrument (i.e. a single metadata
configuration or CLAP embedding). As is customary [14, 15], we report Fréchet audio distance (FAD)
leveraging VGGish and average CLAP score. To measure the efficacy of our pitch conditioning, we
estimate the median pitch of generated samples using YIN [22], reporting median absolute deviation
in semitones (MADpitch) relative to ground truth. Moreover, we measure the average TC across all
instruments. Despite potential estimation errors, the detected pitches of our outputs are generally
well within a semitone of their targets. The CLAP-based model noticeably improves upon the simple
metadata-driven model in terms of CLAP and TC. Its TC metric approaches that of ground truth, with
some gap left to close in future works. Interestingly, the metadata-driven model yields marginally
lower FAD, which may be due to VGGish not being specifically fine-tuned to musical audio signals.

Lastly, we curate a set of text prompts, generating corresponding instruments using our CLAP-based
system. We report average CLAP score correlating generated instruments to their text prompts,
MADpitch, and TC (cf. Tab. 2). We compile 1-5 scale mean opinion scores (MOS) across members
of our organization for quality (MOSquality), text correspondence (MOStext), and TC (MOSTC). We
refer readers to our supplementary materials, available at https://instrumentgen.netlify.app.

5 Conclusion

In this work, we introduced text-to-instrument, and proposed a neural audio codec language model that
is catered for the task. We highlighted the fundamental difference between text-to-instrument and other
related tasks, whereby the former must generate several samples corresponding to the text prompt
that are timbrally consistent to one another. Moreover, we suggested a differentiable objective for
measuring the timbral consistency of generated musical instruments. We established a baseline which
can generate timbrally consistent sample-based instruments, where we have enabled disentanglement
of pitch and timbre via the cross-attention of various conditioning signals incorporated within our
system. Future work will consider additional techniques to further improve the fidelity of our system.

Model FAD↓ CLAP↑ MADpitch↓ TC↓
Instrument family/source type 1.631 0.487 0.045 1.813
CLAP 1.692 0.691 0.045 1.236
Ground truth – – – 1.053

Table 1: Evaluation over the NSynth test set.

Model CLAP↑ MADpitch↓ TC↓ MOSquality ↑ MOStext ↑ MOSTC ↑
CLAP 0.235 0.162 0.873 3.094 3.620 3.465

Table 2: Evaluation over a curated set of text prompts.
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