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Abstract

Audio diffusion models can synthesize a wide variety of sounds. Existing models
often operate on the latent domain with cascaded phase recovery modules to
reconstruct waveform. This poses challenges when generating high-fidelity audio.
In this paper, we propose EDMSound, a diffusion-based generative model in
spectrogram domain under the framework of elucidated diffusion models (EDM).
Combining with efficient deterministic sampler, we achieve similar Fréchet audio
distance (FAD) score as top-ranked baselines with only 10 steps and reach state-
of-the-art performance with 50 steps on the DCASE2023 foley sound generation
benchmark. We also reveal a potential concern regarding diffusion based audio
generation models that they tend to generate samples with high perceptual similarity
to the data from training set. Project page: https://agentcooper2002.github.
io/EDMSound/

1 Introduction

Audio synthesis research has a long history [25]. With the development of deep generative models
in recent years, data-driven audio synthesis methods have become more and more popular. In
particular, diffusion models [33, 10] have led to transformative changes in audio synthesis tasks,
resulting in higher quality audio samples. Current diffusion-based audio generation models utilize
a cascaded system design [20, 7, 14, 38, 13, 9] to circumvent the complexity of generating sound
in the temporal domain [6]. They typically involve converting waveforms into spectrograms to
train a base diffusion generator. A secondary phase recovery network then converts the spectral
representation back into the temporal domain [13, 9]. To further reduce the computational complexity
for the base diffusion model [20, 41], a variational autoencoder (VAE) can be used to transform a
mel-spectrogram into a lower-dimensional latent representation. However, a recent survey study [26]
suggests that current audio generation models might not be ready for professional sound production
and the most significant challenge is presented in audio quality (e.g., fidelity, sampling rate, and level
of noise). This audio fidelity degradation may be caused by the cumulative errors across modules
in cascaded frameworks [28]. In addition, existing diffusion-based audio generation systems are
inefficient at inference time and vanilla samplers will typically take hundreds of neural function
evaluations (NFEs). For instance, AudioLDM [20] takes 100-200 NFEs with denoising diffusion
implicit model (DDIM)[36] for better sample quality.

In this study, we target at improving the generation fidelity in an end-to-end manner by developing
an audio generation model in the complex spectrogram domain. Compared to magnitude spectrum
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Table 1: FAD score and relative dataset similarity score comparison of the generated audio samples
on DCASE2023 task7. Baseline systems that rank 1st in the challenge, both achieved top3 official
rank. ‘mean’ represents the average value of the experiments. ‘best’ represents the best one.

System Dog Footstep Gunshot Keyboard Moving Motor Rain Sneeze OverallBark Vehicle Cough

FAD score (↓)
Scheibler et al [31] 3.68 8.07 3.65 2.78 7.42 5.23 2.61 4.78
Yi et al [42] 3.62 5.10 5.74 3.04 9.80 5.96 1.90 5.02
Jung et al [4] 3.34 3.99 3.50 4.07 14.86 3.53 1.87 5.02
EDMSound-mean (Ours) 2.93 3.22 3.61 3.73 11.10 6.01 1.27 4.56

Relative dataset similarity
Scheibler et al [31] -0.02 -0.04 -0.04 -0.07 -0.02 -0.09 0.03 -0.04
Yi et al [42] -0.05 -0.07 -0.11 -0.08 -0.03 -0.04 -0.05 -0.06
Jung et al (closed) [4] -0.14 -0.11 -0.11 -0.18 -0.10 -0.17 -0.11 -0.13
EDMSound-best (Ours) -0.05 -0.06 -0.06 -0.08 -0.02 -0.02 -0.11 -0.05

and phase spectrum, the real and imaginary components of the complex spectrograms exhibit clear
structures and are suitable for deep learning models [29]. Compared to raw waveform modeling [28],
spectral features have fewer temporal redundancies [21]. To improve generation fidelity, we build
our diffusion generators within the framework of EDM [15] due to its SoTA performance in several
image generation benchmarks. To accelerate the generation while maintaining similar sample quality,
we use exponential integrator (EI) based ordinary differential equation (ODE) samplers during
inference [43, 22, 23]. We validate our method on different sound categories using DCASE2023
foley sound generation benchmark and Speech Command 09 (SC09) [39] dataset (containing spoken
digits from ‘zero’ to ‘nine’) using Fréchet distance as evaluation metric for its correlation with human
perception [16].

While diffusion-based models are capable of generating high quality audio samples, it can uninten-
tionally replicate training data [34]. Replicating data might also harm the audio generation diversity.
Although similar concerns have been explored in computer vision by [34, 35], examination of this
issue in audio generation remains an open research area. In our work, we answer the question of
whether diffusion-based models generate audio samples with replicated contents.

To summarize, we introduce an end-to-end audio diffusion model, EDMSound, in the complex
spectrogram domain. At inference time, we use EI-based ODE samplers to accelerate the generation
speed. We achieve the SoTA performance on DCASE2023 foley sound generation benchmark
and competitive performance on SC09 dataset in terms of Fréchet distance. We propose a method
to examine the memorization issue, i.e., content replication on a range of diffusion-based audio
generation models on the DCASE2023 benchmark dataset. Qualitative and quantitative analysis show
that our proposed model does not generate exact copies of training data. Instead, it is able to generate
audio samples that match the sound timbre of the training samples but with varied temporal patterns.

2 Method
Diffusion probabilistic models (DPMs) [10, 33] involve (1) corrupting training data with increasing
noise levels into normal distribution and (2) learning to reverse each step of this noise corruption
with the same functional form. It can be generalized into score-based generative models [37] which
employ an infinite number of noise scales so that both forward and backward diffusion processes can
be described by stochastic differential equations (SDEs). During inference, the reverse SDE is used
to generate samples with numerical approaches starting from the standard normal distribution. A
remarkable property of the reverse SDE is the existence of a deterministic process, namely probability
flow ODE, whose trajectories share the same marginal probability as the original SDE [37]. As a
result, one can employ ODE solvers. These solvers, in contrast to SDE solvers, allow for larger step
sizes, primarily because they are not influenced by the inherent randomness of the SDE [22].

EDM on Complex Spectrogram We train our diffusion model using EDM [15] which formulates
the above diffusion SDE with noise scales instead of drift and diffusion coefficients. Practically, it
presents a systematic way to design both training and sampling processes. To ensure that the neural
network inputs are scaled within [−1, 1] required by the diffusion models, we apply an amplitude
transformation on the complex spectrogram inputs, c̃ = β|c|αei∠c following [29], where α ∈ (0, 1] is
a compression factor which emphasize time-frequency bins with low energy, ∠c represents the angle
of the original complex spectrogram, and β ∈ R+ is a scaling factor to normalize amplitudes roughly
to within [0, 1]. Such compression technique was originally proposed for speech enhancement [2], but
we found it also effective in general sounds. We adopt 2D efficient U-Net proposed in Imagen [30] as
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Figure 1: Comparison of FAD scores using dif-
ferent ODE samplers on DCASE 2023 Task 7. In
DPM based samplers, the number indicates the or-
der of the solvers, ‘s’ represents ‘singlestep’ and
‘m’ represents ‘multistep’. We use CFG with a
scale of 2.0 and repeat experiments three times.

Model Params FID ↓ IS ↑ mIS ↑ AM ↓

Autoregressive
SampleRNN [24] 35.0M 8.96 1.71 3.02 1.76
WaveNet [27] 4.2M 5.08 2.27 5.80 1.47
Sashimi [8] 4.1M 1.99 4.12 24.57 0.90

Non-autoregressive
WaveGAN [5] 19.1M 2.03 4.90 36.10 0.80
DiffWave [19] 24.1M 1.92 5.26 51.21 0.68

w/ Sashimi 23.0M 1.42 5.94 69.17 0.59
ASGAN (Mel.) [1] 38.0M 0.56 7.02 162.8 0.56
ASGAN (HuBERT) - 0.14 7.67 226.7 0.26
EDMSound (Ours) 45.2M 0.14 7.17 160.2 0.33

Train - 0.00 8.56 292.5 0.16
Test - 0.02 8.33 257.6 0.19

Table 2: Comparison of unconditional generation
with automated metrics on SC09 dataset. FID
(Fréchet Inception Distance), IS (Inception score),
modified IS, and AM score are measures for gen-
erated diversity and quality.

our diffusion model backbone due to its high sample quality, faster convergence speed and memory-
efficiency. During training, we use preconditioned denoising score matching as our training objective
following [15]. i.e, ExEn[λ(σ)∥D(x+n;σ)−x∥22], where x is the training data and n ∈ N (0, σ2I).
We apply classifier free guidance (CFG) [11] at the sampling stage in the conditional generation task.

Efficient Diffusion Samplers Within EDM, the probability flow ODE can be simplified as a nonlinear
ODE, enabling the direct application of standard off-the-shelf ODE solvers. It is found that EI based
ODE solvers have the minimum error with limited steps in a semilinear structured ODE [43], a
combination of a linear function of the data variable and a nonlinear neural network term. Though
such probability flow ODE only contains the non-linear neural network in EDM case, it is still
beneficial to integrate EI approach shown in [43]. Therefore, we use high order EI based ODE
solvers [22], i.e., singlestep and multistep DPM-solvers [22, 23].

Content Replication Detection We define content replication as the presence of generated samples
that are either complete duplicates or a substantially similar portions of the training samples. It is
found that representations trained with full supervision or self-supervised learning can perform as
well as detectors specially trained for content replication detection [34]. Since there is no existing
content replication detectors for sound effects generation, we employ off-the-shelf pretrained audio
representations including CLAP [40], AudioMAE [12], and PANNs [18], and compute the cosine
similarity score to measure the degree of content replication. To better adapt the audio descriptors for
this task, we conduct an additional fine-tuning stage: We attach multi-layer perceptrons to the frozen
pre-trained audio encoders and then train with triplet margin loss [32]. To enhance the robustness
of the descriptor, we incorporate data augmentation by injecting Gaussian noise, random amplitude
scaling, and temporal shifting to audio samples. We first choose one audio sample as an anchor
sample and a positive pair with the same audio with the above augmentation. Then, we randomly
select another audio sample within the same class as the negative pair with data augmentation. After
the fine-tuning step, we search the training set based on the cosine similarity for each generated audio
sample. We identify matched audio samples within the training set with the top-1 similarity scores.
These identified training samples are regarded as top matches for their corresponding generated audio
counterparts. We then analyze the content replication behavior within these matched pairs.

3 Experiment

Experimental setup We benchmark our model, EDMSound, on DCASE2023 task7 and SC09 dataset.
DCASE2023 foley sound generation [3] aims at improving audio fidelity, fit-to-category, and diversity
for foley sound generation and it provides a standardized evaluation framework for different systems.
It includes an open track and a closed track regarding the training dataset scale: the open track allows
participants to leverage the datasets beyond the development set, while the closed track limits the
dataset usage. We compare with strong baseline systems on both tracks in terms of FAD. Yi et al. [42]
(ranked 1st officially) and Scheibler et al. [31] (achieved the highest FAD score on the open track) use
LDMs. Jung et al. [4] use a GAN-based model, and ranked 1st in FAD score on the closed track. For
the SC09 benchmark for unconditional generation, we retrain EDMSound without CFG following
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Figure 2: A matched pair of audio samples found by fine-tuned CLAP that shows a clear sign of
stitching copy. The sound sources in the two audio samples show high similarity.

the best sampler choice and compare our result with baselines including autoregressive models as
well as non-autoregressive models.

Sound Generation Evaluation We present our average FAD with a comparative assessment against
baseline models on DCASE2023 foley sound dataset. We first compare generic ODE solvers Euler
and Heun with EI-based DPM-solvers shown in Fig. 1. It can be seen that the higher order EI-
based ODE solvers yield faster convergence, therefore fewer NFEs are required during inference.
Particularly, the 3rd order single-step DPM-solver (DPM-3s) reaches the similar FAD as Yi et al. [42]
with only 10 steps and achieves the best score 4.56 at the 50th step. Tab. 1 presents the class-wise
and overall FAD scores for the DACSE2023 task7 challenge. Our proposed method, EDMSound,
outperforms the baseline models in terms of the overall FAD in both open and closed tracks, exhibiting
better performance across the majority of class-specific FAD scores as well. In Tab. 2, we present the
SC09 benchmark result. Particularly, we achieved the lowest FID score without pretrained speech
representations in [1]. These results underline the efficacy of our proposed methodology across
diverse evaluation benchmarks.

Copy Detection Evaluation We evaluate whether the generative models produce samples copied
from training dataset on the DCASE2023 task7 dataset [3] which contains a wide variety of sound
types. We compare four systems: the EDMSound-best, Scheibler et al. [31] and Jung et al. [4] with
the FAD scores being 4.36, 4.78, and 5.02 respectively. For content replication detection, we report
our results using the fine-tuned CLAP audio encoder based on two observations: First, the similarity
score distribution is significantly broader when fine-tuned with CLAP, highlighting its capability in
distinguishing similar samples. Secondly, it demonstrates close alignment with human perception,
as verified through manual examination. Further details regarding the ablation study on other audio
descriptors can be found in Appendix B.

After mining the top-1 matched audio samples, we observe high resemblance between a number
of pairs from our EDMSound-best. Fig. 2 illustrates the waveform and spectrogram of a paired
audio segment capturing the sound of keyboards. Despite variations in the temporal alignment of key
presses, the spectral coherence strongly suggests a common sound source originating from the same
keyboard. We thereby infer that our diffusion model imitates the characteristics of its training dataset.
We term the phenomenon where generated samples closely match the training samples in spectral
coherence, but with relaxed temporal alignment, as ‘stitching copies’. After listening to samples from
all systems, we find that the model from Scheibler et al. is prone to producing samples that are ‘exact
copies’ with training samples. This strong similarity probably suggests over-fitting in the task of
generating foley sounds using a large, pre-trained LDM-based model with more than 850 million
parameters [7]. For a more comprehensive visual representation of this phenomenon, please refer to
our project page. To quantify the overall similarity between the generated data and the training data,
we use the 95-percentile similarity score of all matched audio samples defined in Sec. 2. To better
compare the distribution difference, we compute the relative similarity by subtracting the training
dataset similarity scores from the generated ones shown in the lower part of Tab. 1. Despite the
fact that there are instances from generated samples showing a high degree of similarity, the overall
negative relative similarity scores indicate that none of the generative models replicate their training
set more than the intrinsic similarity within the training set itself.

4 Conclusion

This paper introduced EDMSound, a simple and effective end-to-end diffusion model working on the
complex spectral domain implementing efficient ODE solvers. EDMSound synthesizes high quality
audio improving the state-of-the-art in terms of FAD on two standard benchmark datasets (SC09 and
DCASE2023 challenge task7). Furthermore, we proposed fine-tuned CLAP to examine the issue of
content replication in the audio domain.
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Appendices
A Training and sampling within EDMs

When using complex spectrograms as the diffusion model inputs, the real and imaginary components
are treated as two separate channels corrupted by Gaussian noise in the forward process. And as a
result, the phase information is gradually destroyed. In the reverse sampling process, the real and
imaginary channels are gradually recovered through the score network and thereby recover the phase.

A.1 Training

In DPMs, the neural networks are usually used to model the score [37] of the data at each noise level,
∇x log(x;σ), where x is the data and σ is the noise level. i.e., the the gradient of the log probability
desnity with respect to data. Or equivalently, it can be seen as training a denoiser function [15]
D(x;σ) to recover clean data given corrupted versions, where ∇x log(x;σ) = (D(x;σ)− x)/σ2.
However, its magnitude varies significantly on given noise level. To decorrelate the magnitude of the
network prediction with σ, we follow the preconditioning scales on the denoiser function proposed
in [15] with cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)), where Fθ(·) is the neural network output,
cin, cout are set to ensure a unit variance for the network inputs and outputs, cskip is set to minimize
Fθ prediction errors scaled by cout, and λ(σ) is set to 1/c2out(σ) to equalize the initial training loss.
Following Karras et al. [15], the desnoiser preconditioning can be written as:

D(x;σ) =
σ2
data

σ2
data + σ2

x+
σ · σdata√
σ2
data + σ2

Fθ

( x√
σ2
data + σ2

;
ln(σ)

4

)
. (1)

During training, we use σdata = 0.2 as the approximation for the standard deviation of the compressed
input spectrogram magnitude values. For σ, we use the log normal noise distribution with mean
of -3.0 and variance of 1.0. Notice that we did not tune these distribution parameters due to
insufficient computation budgets, but we found that when synthesizing sounds without much semantic
information, the final performance is robust to reasonable parameters. Finally, we can write the
training objective as:

Epdata(x),ϵ,σ[λ(σ)∥D(x+ σϵ;σ)− x∥22], (2)
where pdata(x) represents the training data distribution, ϵ ∼ N (0, I) is the standard normal distribu-
tion, σ is the noise levels during training, and λ(σ) is the loss weighting factor.

A.2 Sampling

Efficient samplers for DPMs can be categorized into training-based methods and training-free
methods. Of all the efficient samplers, training-free methods offer the advantage of direct applicability
to pretrained DPMs without necessitating additional training phases [44]. Recently proposed fast
training-free samplers are using ODE solvers since SDE solvers are hard to converge within a few
steps due to the fact that discretizing SDEs is generally difficult in high dimensional space and is
limited by the randomness of the Wiener process [22, 17]. Another benefit of using ODE solvers is
that such deterministic sampling is able to map the input data into corresponding latent representations
and useful for editing.

In EDM, the probability flow ODE can be formulated as:
dx = −σ̇(t) σ(t)∇x log p

(
x;σ(t)

)
dt. (3)

This simplification enables the direct application of standard off-the-shelf ODE solvers. When
numerically solving ODEs, each step introduces a local error, which cumulatively results in a global
error over a specified number of steps. The commonly used Euler’s method is a first order ODE solver
with global error linearly proportional to step size. Higher order solvers have lower global error at a
given time but require multiple NFEs at each step. The second order Heun solver [15] provides a
good trade-off between global error and NFE. With the advantage of EI-based ODE solvers, we apply
DPM solvers [23], and our DPM-solvers samplers codebase are adapted from the implementation
of k-diffusion 2 and DPM-solver official codebase 3. During inference, we use Karras scheduler

2https://github.com/crowsonkb/k-diffusion
3https://github.com/LuChengTHU/dpm-solver
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proposed in EDM with a ρ of 7.0, σmin of 0.0001 and σmax 3.0. We also a dynamic threshold of
0.99 following Imagen [30]. For conditional generation, we use CFG scale of 2.0 as we found it
achieved the best performance across different samplers.

A.3 Neural networks

We applies efficien U-Net as our denoiser function backbone, which is designed to be memory
efficient and converge fast. It reverses the order of downsampling/upsampling operations in order
to improve the speed of the forward pass. For more detailed descriptions of the architecture, we
encourage the readers to Appendix B from [30]. Our efficient U-Net is adapted from open source
Imagen4, For the input complex spectrogram, we use short-time Fourier transform (STFT) with
window size of 510 samples and hop size of 256 samples. We use an input channel of 2 for the real
and imaginary components, 128 as the base dimension and channel multipliers of [1, 2, 2, 2]. For each
downsampling/upsampling block, we use 2 ResNet blocks with 2 attention heads in self-attention
layer. The model has a total of 45.2 million trainable parameters. We use class label and log σ
as efficient U-Net conditional inputs. For class conditioning, we represent class labels as one-hot
encoded vectors, and then feed them through a fully-connected layer.

B Comparison of audio descriptors in copy detection
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(a) AudioMAE zero-shot.
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(b) AudioMAE fine-tuned.

0.5 0.6 0.7 0.8 0.9 1.0
similarity score

di
st

rib
ut

io
n

Training dataset
EDMSound
Scheibler et al
Jung et al
Yi et al

(c) CLAP zero-shot.
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(d) CLAP fine-tuned.
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(e) PANNs zero-shot.
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(f) PANNs fine-tuned.

Figure 3: Dataset similarity distribution of top1 matched pairs comparison of AudioMAE, CLAP and
PANNs.

In this section, we compare the dataset similarity distributions from the DCASE2023 challenge task7
systems computed using the three audio encoder both with and without the fine-tune process. Fig. 3
shows the comparison results. In the left column, we present the similarity distribution of audio
encoders in a zero-shot copy detection scenario (i.e., without fine-tuning). The right column presents
the outcomes post fine-tuning. From the figure, we can observe that before fine-tuning, the similarity
scores are close to 1 especially for AudioMAE, and this suggests that the audio representations are
too close for intra-class samples. This fine-tuning helps to discriminate audio samples within the
same class as the similarity score distribution masses shift to the left and spread out compared to

4https://github.com/lucidrains/imagen-pytorch
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the models without fine-tuning. Upon evaluation, the fine-tuned CLAP model exhibits the most
distinctive distribution spread compared to other models. Manual listening evaluations of matched
pairs from all models further confirm that the fine-tuned CLAP and PANNs consistently produce
pairs that match with human auditory perception. In conclusion, we use the fine-tuned CLAP in our
copy detection analysis in the main text.

9


	Introduction
	Method
	Experiment
	Conclusion
	Acknowledgement
	Appendices
	Training and sampling within EDMs
	Training
	Sampling
	Neural networks

	Comparison of audio descriptors in copy detection

