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Figure 1: CTAG leverages a virtual modular synthesizer to generate sounds which capture the se-
mantics of user-provided text prompts in a sketch-like way, rather than being acoustically literal.
Spectrograms of auditory outputs corresponding to eight text prompts showcase the range of sounds
this approach can yield, accompanied by a fully interpretable and controllable parameter space.

Abstract

Sound designers have long harnessed the power of abstraction to distill and high-
light the semantic essence of real-world auditory phenomena, akin to how simple
sketches can vividly convey visual concepts. However, current neural audio syn-
thesis methods lean heavily towards capturing acoustic realism. We introduce
an open-source novel method centered on meaningful abstraction. Our approach
takes a text prompt and iteratively refines the parameters of a virtual modular
synthesizer to produce sounds with high semantic alignment, as predicted by a
pretrained audio-language model. Our results underscore the distinctiveness of
our method compared with both real recordings and state-of-the-art generative
models.

1 Introduction
“Of course, bubbles don’t make sound, but this is the magic of sound design...you
can create the concept of a sound and it seems real.” – Suzanne Ciani

In creative sound design, realism isn’t everything. Suzanne Ciani’s iconic 1970s Coca Cola pop and
pour sound effect, which symbolizes the refreshing experience of opening a soda, was crafted with
a Buchla synthesizer rather than recorded from a bottle. Her work illustrates the immense power
of abstraction in auditory representation, where the essence of a concept can be expressed without
mimicking real-world acoustic details, while achieving greater impact.

We recognize a gap in such meaningful abstraction within current neural audio synthesis paradigms,
which prioritize acoustic fidelity over high-level semantics. Despite impressive advances, this limits
expressive capabilities. We propose a novel method integrating a virtual modular synthesizer with a
pretrained audio-language model, allowing for generating intuitively plausible sounds without literal
representation. Our interpretable, controllable approach differs significantly from state-of-the-art
models, offering benefits for creative work. We show examples in Figure 1.
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2 Related Work

Sound Synthesis Analog synthesizers are popular, yet largely inaccessible due to size and cost [1].
Mass-produced digital synthesizers have historically enabled widespread exploration of sound syn-
thesis [2], in both hardware and software. Recent neural approaches like WaveNet and WaveGAN
have used neural networks to synthesize coherent audio content. Oscillator models like DDSP ex-
tend this by combining deep learning with classic signal processing elements. Our approach is
motivated by such models, but recognizes that modular synthesizers remain integral to sound design
today by offering an interpretable, controllable parameter space.

Language-Sound Correspondence Recent models have connected language and sound by learn-
ing multimodal embeddings. CLIP [3] pioneered this approach with contrastive learning on image-
text pairs. CLAP [4] and LAION-CLAP [5] extended this approach to audio-text pairs. Contempo-
rary text-to-audio approaches directly generate audio from text, often by using models like CLAP in
their learning objectives. However, these models focus on realistic audio renditions. In contrast, we
aim to generate abstract yet high-quality sounds using a controllable modular synthesizer guided by
CLAP. This allows interpretability and fine-grained control compared to end-to-end neural models.
We specifically compare to AudioLDM [6] and AudioGen [7].

Abstract Synthesis Visual sketching offers an intuitive analogy to abstract sound synthesis, us-
ing minimalist representations like line drawings to evocatively convey meaning while emphasizing
essence over realism. This abstraction problem has seen more progress in images via models like
CLIPasso [8], CLIPTexture [9], and ES-CLIP [10]. In audio, prior work like the Sound Sketch-
pad [11] and SkAT-VG [12] explores sketching interfaces for sound composition. Here, we focus on
synthesizing novel abstract sounds from scratch using text descriptions and a modular synthesizer.
We also generate, rather than recompose, sounds.

Interpretable and Controllable Synthesis Interpretability and controllability are essential for
human-AI co-creation, yet black-box neural models lack these. Some work uses program synthe-
sis [13] or timbre regularization [14] to improve interpretability. Our approach instead offers an
interpretable, controllable modular synthesizer programmed with descriptions. This avoids complex
neural models while enabling users to examine, understand, and refine sounds.

The Synthesizer Programming Problem Though synthesizers form the bedrock of much modern
music, synthesizer programming remains challenging due to the disconnect between parameters and
audio output [15]. Prior techniques like inverse synthesis [16, 17, 18] require target audio, limiting
creative applications. We instead perform text-to-parameter inference, allowing users to imagine
new sounds using language. This bridges the semantic gap while encouraging generative exploration
beyond reconstructing existing audio. This approach also enables intuitive sound creation without
specialized training.

3 Methods

Figure 2: In our approach, we use the LAION-CLAP model [5] to compute the similarity between
a user-provided text prompt and SYNTHAX’s output. Then, we use the DES algorithm [19] to
iteratively adjust parameter settings.
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Our methodology hinges on three pillars (See Figure 2): a synthesizer, implemented via SYN-
THAX [20], a gradient-free optimization method, implemented via the Evosax [21] evolutionary
optimization library, and an objective function based on the LAION-CLAP [5] model, which we use
to estimate semantic alignment between the synthesized audio and its corresponding text prompt.

Synthesizer We use a simple synthesizer available in SYNTHAX, a fast modular synthesizer writ-
ten in JAX [22]. We use the Voice synthesizer architecture, adapted from torchsynth [23], which
has already been used for programmatic synthesis [17]. All parameters are initialized uniformly,
pi ∼ U(0, 1). Audio is generated in batches at 48kHz, with 480Hz control rate, and producing 3
seconds of audio.

Optimization Early experiments showed gradients with this synthesizer to be highly unstable.
Therefore, we decided to focus on non-gradient methods as have been used in other recent works
on abstract synthesis to achieve strong results [10]. We experimented with the Evosax library [21],
and selected the Discovered Evolution Strategy (DES) [19] algorithm, finding that it achieved better
results faster than the majority of other tested algorithms.

We tuned the hyperparameters of DES via Bayesian optimization using the Adaptive Experimenta-
tion (AX) platform [24]. We ran the sweep for 50 trials on a subset of 20 common sounds taken
from a dataset of 165 [25]. The sweeping relied on the average score of all 20 prompts for 300 iter-
ations each. We swept the following parameters: N ∈ [10, 100], β ∈ [10.0, 30.0], ασ ∈ [0.0, 1.0],
αm ∈ [0.0, 1.0] and σ0 ∈ [0.0, 1.0]. The result was {N = 42, β = 11.47, ασ = 0.14, αm =
0.75, σ0 = 0.18}.

Objective Function We use LAION-CLAP [5], with an HTSAT-based audio encoder [26], a
RoBERTa-based text encoder [27], and the audioset-best checkpoint for general audio. The en-
coders process the audio data Xa

i and text data Xt
i in batches of size B where B corresponds to the

optimizer’s population size and (Xa
i , X

t
i ) is one particular pair of synthesized audio with input text

prompt. We extract the audio embeddings Ea
i and the text embeddings Et

i with the encoders and
use them to calculate the similarity score between a batch of audio data and a specific prompt.

A batch of audio S(PB) = Xa
B is produced by the synthesizer S from a batch of parameters P . Then

minPB −E
S(PB)
B Et

i
T formulates the optimization problem to optimize the similarity score between

each audio in the batch and a given text prompt using their corresponding embeddings.

4 Results

4.1 Quantifying Abstractness

Quantitatively evaluating the abstract quality of synthesized sounds is challenging; no ready and
validated metrics exist. Since achieving abstract sound synthesis with semantic correspondence is a
novel contribution of our work, we propose experiments to touch on related aspects.

AudioSet-50 ESC-50
AudioGen AudioLDM CTAG AudioGen AudioLDM CTAG

Acc (Top-1) 0.54 0.25 0.21 0.44 0.24 0.12
Acc (Top-5) 0.80 0.56 0.46 0.63 0.41 0.25

Table 1: Top-1 and Top-5 classification accuracies (%) for two pre-trained classifiers corresponding
to a subset of AudioSet (AudioSet-50) and ESC-50. We evaluated both models on results collected
using AudioGen, AudioLDM, and our method, CTAG.

We use pre-trained classifiers to quantify the distribution shift to more abstract sounds. We evaluate
on two datasets: ESC-50 [28], using a CNN14 classifier, and a 50-class subset of AudioSet, using an
AST [29] model. Results are shown in Table 1. Our method shows lower accuracy than AudioLDM
and AudioGen, indicating a shift away from realism, though still well above chance levels. On
AudioSet-50 our results are close to AudioLDM, which we observe as having high realism but
low prompt-consistency. This helps quantify the abstractness of our sounds, by illustrating their
deviation from the distribution of natural sounds.
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4.2 Synthesis Quality and Variation

Evaluating quality is challenging without reference audio clips, as in our case. We use spectral de-
scriptors to quantify qualitative differences from other models (Table 2). Our sounds have higher
spectral complexity, flux, high-frequency content (HFC), rolloff, and centroid. This suggests percep-
tual differences from other methods, like more high-frequency content due to our higher sample rate.
The measures are not validated quality metrics, but help quantify observed qualitative differences.

Our sounds also achieve higher MP3 compression ratios than other methods. Variable bit rate com-
pression uses lower ratios for more perceptually complex audio. The higher ratios for our sounds
suggest they are perceptually “simpler” than sounds from other methods. This provides another
quantitative signal that our sounds differ perceptually.

AudioSet-50 ESC-50
AudioGen AudioLDM CTAG AudioGen AudioLDM CTAG

Complexity 17.01 15.46 20.86 9.23 10.82 20.09
Flux 0.09 0.09 0.21 0.05 0.07 0.23
HFC 54.64 112.01 684.12 28.37 63.17 551.38
Rolloff 2,468.64 1,716.20 7,966.01 2,294.85 1,679.43 7,066.51
Centroid 1,633.61 1,157.99 4,672.28 1,510.73 1,176.92 4,139.26
Compression Ratio 6.62 7.28 9.71 6.60 7.72 9.73

Table 2: Comparison of spectral descriptors and audio compression ratio, across ESC-50 and Au-
dioSet. Results are grouped by the evaluation of AudioGen, AudioLDM, and our method, CTAG.

4.3 Human Ratings

AudioGen AudioLDM CTAG

Accuracy 0.70 0.57 0.45
Confidence 3.29 2.64 2.59
Artistic Interpretation 2.78 3.40 3.94

Table 3: User study results for sounds from AudioGen, AudioLDM, and our method, CTAG. We
report average accuracy and confidence on label identification, and average rating of the artistic
interpretiveness (1-5, realistic portrayal to artistic interpretation) of the sound.

We conducted a user study with 23 participants who rated 60 sounds each, with 20 sounds each
from our method, AudioLDM, and AudioGen. Results are shown in Table 3. The randomly selected
sounds covered 10 semantic categories: Boiling Water, Camera Snapping Photos, Computer Startup
Sound, Duck Quack, Hammering, Heart Beat, Scream, Squeaky Toy, Telephone Ringing, and Truck
Beeping While Backing Up. All prompts were taken from [25].

Participants identified the category of each sound and rated their confidence. Our sounds were
identified with significantly lower accuracy compared to the other methods, as shown by post-hoc
contrasts after a mixed-effects logistic regression model (p < 0.001). Participants also rated each
sound’s artistic interpretiveness versus realistic portrayal on a 5-point scale. Our sounds were rated
as significantly more artistically interpretive, modeled with a linear mixed-effects model and tested
with post-hoc contrasts (p < 0.0001).

5 Conclusion

In this work, we proposed a method for text-to-audio generation that offers a fresh perspective on
neural audio synthesis by emphasizing the meaningful abstraction of auditory phenomena, contrary
to prevalent methods that prioritize acoustic realism. Our results position this approach as a distinc-
tive tool in the field of audio synthesis, capable of stimulating new directions in audio generation
research that consider the level of abstraction as an important design parameter.
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