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Abstract

Obtaining strong reproducible foundation language-audio models require open
datasets of sufficient scale and quality. To pre-train contrastive language-audio
model we compose large-scale sound effects dataset with detailed text descriptions
for each sample. Generating music, as a special type of audio, presents further
challenges due to limited availability of music-text pairs with expressive enough
captions. We show here how we combine various composed datasets to pre-train a
large-scale audio-language contrastive model (CLAP). Then we train, on music
samples we collected, a state-of-the-art text-to-music model, MusicLDM, that
adapts AudioLDM, which is based on Stable Diffusion architecture, to the music
domain, by utilizing pre-trained CLAP model and the Hifi-GAN vocoder, as
components of MusicLDM. The modelling work validates thus composed text-
audio and text-music datasets as strong basis for further studies on language-rooted
foundation models for audio at larger scales.

1 Introduction

Language-audio modeling is a relatively new, but rapidly growing area that receives strong impulses
from progress in language-vision modeling. While contrastive language-audio models like CLAP
inherit representation learning ideas from CLIP [1], the goal in text-to-audio generation is to generate
audio pieces, such as sound events, sound effects, and music, based on textual descriptions. Diffusion
models have shown superior performance in these types of cross-modal generation tasks, with
approaches for text-to-image generation like DALLE-2 [2] and Stable Diffusion [3]; and AudioGen
[4], AudioLDM [5], and Make-an-Audio [6] for text-to-audio. Compared to other modalities such as
text-to-image, there are relatively few text-music pairs with both high-quality audio and text available,
making it difficult to train a high-quality conditional generative model.

In this paper, we focus on work done along both these lines. We report on datasets composed for
training contrastive language-audio models and for training generative text-conditioned music models,
using either sound effect focused or music focused data with detailed text descriptions. We describe
our efforts to provide open-source versions of contrastive language-audio and text-to-music generative
models pretrained on the composed open datasets.

We have developed a pipeline for contrastive audio-language pretraining using the collected language-
sound effects dataset [7], performing extensive evaluation of pretrained models on wide range of

Preprint. Under review.



standardized benchmarking tasks such as text-to-audio retrieval, zero-shot audio classification, and
supervised audio classification. Using the composed music focused dataset, we train a state-of-the-art
text-to-music generation model, MusicLDM, adapting AudioLDM [5] architecture, which itself
borrows design from the Stable Diffusion [3], to the music domain.

AudioLDM follows the same design idea as Stable Diffusion. While Stable Diffusion re-uses CLIP
[1] and VQ-GAN [8], a pre-trained contrastive language-vision model and a vision encoder-decoder,
AudioLDM relies on CLAP [7], pre-trained contrastive language-audio model that we have studied,
and HiFi-GAN [9] as vocoder. Both Stable Diffusion and AudioLDM crucially benefit from open-
source availability of corresponding model components. In our work, we open-source both dataset
and model pipelines, allowing the community to replicate the results and build on the top of our work.

2 Methods

LAION-603k-Audio dataset We introduce LAION-Audio-630K, an extensive audio-text dataset
with 633,526 pairs, totaling 4,325.39 hours of content. This dataset comprises a diverse range of
audio content, including human activities, natural and animal sounds, and audio effects, sourced from
8 publicly available websites 1. Each audio sample has either text caption, class label, tags, filename
that describes the audio or a combination of both. When working with datasets that only provide
tags or labels, we expand these labels into captions by using a pre-trained language model T5 [10] to
make captions on top of these keywords. Some audio samples have relative text (i.e. user comments)
which we also integrated into our constructed captions.

Data Source Number of Samples Duration Data Type

BBC sound effects 15973 463.48hrs 1 caption per audio, audio
Free To Use Sounds 6370 175.73hrs Filename as caption, audio
Sonniss Game effects 5049 84.6hrs Filename as caption, audio
We Sound Effects 488 12.00hrs Filename as caption, audio
Paramount Motion Sound Effects 4420 19.49hrs Filename as caption, audio
Audiostock 10000 46.30hrs 1 caption per audio, audio
Freesound [11] 515581 3003.38rs 1-2 captions per audio, audio
Epidemic Sound 75645 220.41hrs 2 captions per audio, audio

Table 1: LAION-Audio-630k Datasets
LAION-Audio-630K stands out as the largest publicly accessible audio-text dataset, surpassing
previous datasets by a significant margin 2. All audio files have been converted to FLAC format with
a mono channel at a 48kHz sample rate. This approach allows us to incorporate additional data into
the training of the contrastive language-audio pretraining model. By combining all the datasets, we
significantly augment the total number of audio samples paired with text captions, reaching a total
of 2.5 million. Despite audio samples from datasets mentioned in Table 2 coming from different
sources, we cannot exclude the overlap between them and LAION-Audio-630K. However, due to
much larger scale of LAION-Audio-630K the overlap can be considered negligible.

Dataset Pairs Audio Durations (hrs)

Clotho[12] 5,929 37.00
SoundDescs[13] 32,979 1060.40
AudioCaps[14] 52,904 144.94
LAION-Audio-630K 633,526 4325.39

Table 2: LAION-Audio-630K compared with existing audio caption datasets.

Music focused dataset The original CLAP model trained on sound effect datasets. To work with
music, we trained a CLAP model on 20 000 hours of music data in addition to its original training data,
allowing it to better understand the relation between music and textual descriptions. For MusicLDM,
we acquired the Audiostock dataset through web crawling of the Audiostock website, capturing URLs
of audio samples along with associated descriptions and other metadata offered by the platform. The
Audiostock dataset contains 9000 music tracks for training and 1000 tracks for testing. The total
duration is 455.6 hours. It provides a correct textual description of each music track.

CLAP Architecture of CLAP is similar to one of the CLIP [1]: it has two decoders to separately
process audio and text data. The model is trained using the contrastive learning approach, wherein it
learns to align audio and text embeddings in pairs, employing the identical loss function as described
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Figure 1: The architecture of MusicLDM, which contains a contrastive language-audio pretraining (CLAP)
model, an audio latent diffusion model with VAE, and a Hifi-GAN vocoder.

in [1]. We select two models, PANN [15] and HTSAT [16], to construct the audio encoder. We
select three models, CLIP transformer [1] (text encoder of CLIP), BERT [17], and RoBERTa [18], to
construct the text encoder.

MusicLDM As illustrated in Figure 1, MusicLDM has similar architecture as AudioLDM: a con-
trastive language-audio pretraining (CLAP) model [19], an audio latent diffusion model [5] with a
pretrained variational auto-encoder (VAE) [20], and a Hifi-GAN neural vocoder [9]. For MusicLDM,
we make two changes from the original AudioLDM to enhance its performance on text-to-music
generation. Since the original contrastive language-audio pretraining (CLAP) model is pretrained on
text-audio pair datasets dominated by sound events, sound effects and natural sounds, we retrained
the CLAP on text-music pair datasets (details in Supp. B) to improve its understanding of music data
and corresponding texts. We also retrained the Hifi-GAN vocoder to ensure high-quality transforms
from mel-spectrograms to music waveforms. Second, in the original AudioLDM, the model is only
fed with audio embeddings as the condition during the training process, i.e., Ex = Ea

x; and it is
fed with text embeddings to perform the text-to-audio generation, i.e., Ex = Et

x. This approach
leverages the alignment of text and audio embeddings inside CLAP to train the latent diffusion model
with more audio data without texts.

3 Results.

CLAP performance The CLAP has undergone extensive evaluation across various audio tasks,
including Zero-Shot and supervised audio classification (as depicted in Table 3), as well as text-audio
retrieval. As evidenced by the results in Table 3, our CLAP model, pretrained on LAION-630k,
exhibits a substantial performance boost compared to a model with a similar architecture [21]. This
outcome underscores the superiority of LAION-630k as a dataset for foundational model pretraining.

Model
Audio Classification Dataset & Setting

ESC-50 US8K VGGSound FSD50K
ZS. ZS. ZS. SV. SV.

Wav2CLIP[22] 41.4 40.4 10.0 46.6 43.1
AudioClip[23] 69.4 65.3 - - -
CLAP[24] 82.6 73.2 - - 58.6
Ours 89.1 73.2 29.1 75.4 64.9
Ours+Fusion 88.0 75.8 26.3 75.3 64.4
Our+K2C Aug. 91.0 77.0 46.2 75.3 59.7
SoTA* 82.6[24] 73.2[24] 10.0[25] 64.1[26] 65.6[27]

Table 3: The zero-shot (ZS.) and supervised (SV.) audio classification results. The SoTA of each dataset/setting
is denoted by the reference after the number.

We use HTSAT-RoBERTa as our best model to conduct the text-to-audio retrieval experiments as a
comprehensive evaluation in Table 4, adopting the same metrics in [13] to compute recall scores at
different ranks in this task. We gradually increase the scale of the dataset. We find that scaling up the
dataset from “AudioCaps + Clotho” to “LA.” does not improve the result on AudioCaps evaluation
set but gets better performance on Clotho evaluation set, which can be explained by relative audio
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Model Training Set
AudioCaps Eval. Clotho Eval.

T-A Retrieval A-T Retrieval T-A Retrieval A-T Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

MMT [13] AudioCaps or Clotho 36.1 72.0 84.5 39.6 76.8 86.7 6.7 21.6 33.2 7.0 22.7 34.6
ML-ACT [28] AudioCaps or Clotho 33.9 69.7 82.6 39.4 72.0 83.9 14.4 36.6 49.9 16.2 37.6 50.2
CLAP-HTSAT [24] AudioCaps + Clotho + WT5K 34.6 70.2 82.0 41.9 73.1 84.6 16.7 41.1 54.1 20.0 44.9 58.7
HTSAT-RoBERTa AudioCaps + Clotho 36.7 70.9 83.2 45.3 78.0 87.7 12.0 31.6 43.9 15.7 36.9 51.3
HTSAT-RoBERTa AudioCaps + Clotho + LA. 32.7 68.0 81.2 43.9 77.7 87.6 15.6 38.6 52.3 23.7 48.9 59.9
HTSAT-RoBERTa ACaps. + Clotho + LA. + AudioSet (template) 34.7 70.5 83.2 45.3 79.5 89.2 16.4 39.0 51.0 21.8 44.6 60.1
HTSAT-RoBERTa ACaps. + Clotho + LA. + AudioSet (K2C aug.) 36.1 71.8 83.9 46.8 82.9 90.7 16.1 38.3 51.1 22.7 48.5 60.8

Table 4: The text-to-audio retrieval performance on AudioCaps and Clotho datasets, where “LA." refers to
LAION-Audio-630K, “template" refers to the text prompting by templates, “K2C aug." refers to the keyword-to-
caption augmentation.

similirity of sample from AudioCaps and AudioSet on which the audio encoder’s loaded checkpoint
was pretrained. When we add more data from other sources to the training, we observe the increase
in model’s generalization.

MusicLDM performance Following evaluation techniques used in past work on audio generation
[5], we use Frechet distance (FD), inception score (IS), and Kullback-Leibler (KL) divergence to
evaluate the quality of generated outputs. Frechet distance evaluates the audio quality by using
an audio embedding model to measure the similarity between the embedding space of generations
and that of targets. In this paper, we use two standard audio embedding models: VGGish [29] and
PANN [15]. The resulting distances we denote as FDvgg and FDpann, respectively. Inception
score measures the diversity and the quality of the full set of audio outputs, while KL divergence is
measured on individual pairs of generated and ground truth audio samples and averaged. We use the
audioldm_eval library1 to evaluate all the metrics mentioned above, comparing the ground truth
audio from the Audiostock 1000-track test set. Table in Supplementary A 5 presents the FD, IS, and
KL results for our models in comparison with baseline models (see details in Supplementary).

Table 5: The evaluation of generation quality among MusicLDMs and baselines. AA-Train. and TA-Train. refer
to the audio-audio training scheme and the text-audio traning scheme.

Model AA-Train. TA-Train. FDpann ↓ FDvgg ↓ Inception Score ↑ KL Div. ↓
Riffusion [30] ✗ ✓ 68.95 10.77 1.34 5.00
MuBERT [31] — — 31.70 19.04 1.51 4.69
AudioLDM ✓ ✗ 38.92 3.08 1.67 3.65

MusicLDM ✓ ✗ 26.67 2.40 1.81 3.80
MusicLDM (Only TA-Training) ✗ ✓ 32.40 2.51 1.49 3.96

MusicLDM w/. Text-Finetune ✓ ✓ 27.81 1.75 1.76 3.60

4 Conclusion & Outlook

In this paper, we demonstrate validation of open language-audio datasets by training strong baselines
for two important audio model classes, contrastive language-audio (CLAP) and generative text-to-
music model (musicLDM). We evaluate training on standardized benchmarks and show that both
CLAP and musicLDM pre-trained on the composed datasets match strong results, either on zero-shot
and fine-tuned supervised audio classification and text-audio retrieval tasks (CLAP), or on text-to-
image generation tasks (musicLDM). MusicLDM incorporates CLAP, VAE, Hifi-GAN, and latent
diffusion models as open-source components, showing power of re-usability and extendability given
by open-source artefacts. We assess MusicLDM generated samples using objective and subjective
metric as well as text-music relevance.

All datasets we composed in this work, including LAION-630k-audio [7] utilized in CLAP and
other related tasks, are shown in our experiments to produce strong representational and generative
language-audio models. The experimental results validate the composed datasets as suitable basis
for pretraining various foundation audio models and open perspective for pretraining experiments
on larger scales, including scaling law derivation. Our future research aims to explore methods for
combining these datasets and other vastly available data in systematic manner to establish foundation
audio reference dataset for training of robust foundation language-audio models that excel across
various audio task types. This effort is similar to DataComp [32], an experimental community-driven
testbed and challenge centered around finding the best possible dataset while fixing model architecture
and training procedure.

1https://github.com/haoheliu/audioldm_eval
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